EDGEWOOD #### CHEMICAL BIOLOGICAL CENTER U.S. ARMY SOLDIER AND BIOLOGICAL CHEMICAL COMMAND ECBC-TR-324 TOXICITY ASSESSMENTS OF ANTIMONY, BARIUM, BERYLLIUM, AND MANGANESE FOR DEVELOPMENT OF ECOLOGICAL SOIL SCREENING LEVELS (ECO-SSL) USING ENCHYTRAEID REPRODUCTION BENCHMARK VALUES Roman G. Kuperman Ronald T. Checkai Carlton T. Phillips Michael Simini RESEARCH AND TECHNOLOGY DIRECTORATE Jason A. Speicher David J. Barclift NAVAL FACILITIES ENGINEERING COMMAND Lester, PA 19113-2090 November 2002 20040422 060 Approved for public release; distribution is unlimited. | Disclaimer | |---| | The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents. | | | | | | | | | # **REPORT DOCUMENTATION PAGE** Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of taw, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. | 1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE | 3. DATES COVERED (From - To) | |--|--|--| | XX-11-2002 | Final | Feb 2000 – Sep 2002 | | 4. TITLE AND SUBTITLE | | 5a. CONTRACT NUMBER | | Toxicity Assessments of Antimony, Bar | | | | for Development of Ecological Soil Scr | reening Levels (Eco-SSL) Using Enchytraeid | 5b. GRANT NUMBER | | Reproduction Benchmark Values | | | | - | | 5c. PROGRAM ELEMENT NUMBER | | | | 9KNM22 | | 6. AUTHOR(S) | | 5d. PROJECT NUMBER | | | 1 T.; Phillips, Carlton, T.; Simini, Michael | | | (ECBC); Speicher, Jason A.; and Barcl | ift, David J. (EFANE) | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | A PERSONALIVA OPPONITATION PERSON | | | S) AND ADDRESS(ES) AND ADDRESS(ES) | 8. PERFORMING ORGANIZATION REPORT NUMBER | | DIR, ECBC, ATTN: AMSRD-ECB-R | | ECBC-TR-324 | | CO, NAVFAC, EFANE, 10 Industrial I | Highway, MS #82, Lester, PA 19113-2090 | LODO-1R-324 | | | | | | A COONCODING / MONITORING ACENCY | NAME(S) AND ADDRESS(ES) | 10. SPONSOR/MONITOR'S ACRONYM(S) | | 9. SPONSORING / MONITORING AGENCY | Highway, MS #82, Lester, PA 19113-2090 | 10. Of Choolemonitor o Action (a) | | CO, NAVIAC, EFAINE, TO INCUSTRAL I | ingilway, 1415 #62, Lesiei, 1 A 17113-2070 | | | | | 11. SPONSOR/MONITOR'S REPORT NUMBER(S) | | | | , | | | | | | | | | #### 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. #### 13. SUPPLEMENTARY NOTES #### 14. ABSTRACT The U.S. Environmental Protection Agency is developing Ecological Soil Screening Level (Eco-SSL) benchmarks for ecological risk assessment of contaminants at Superfund sites. Benchmarks for invertebrates were developed from existing literature. Insufficient information for Ba, Be, Mn, and Sb to generate Eco-SSLs necessitated standardized toxicity testing to fill the data gaps. We used the Enchytraeid Reproduction Test (ERT) with *Enchytraeus crypticus* in this study. This test was selected on the bases of its ability to measure chemical toxicity to ecologically relevant test species during chronic assay, and its inclusion of at least one reproductive component among the measurement endpoints. Tests were conducted in Sassafras sandy loam soil, which supports relatively high bioavailability of metals. Aging/weathering procedures for amended treatment soil were incorporated into the study to better reflect the "real world" exposure conditions. The toxicity order based on juvenile production was Be > Mn > Sb > Ba with EC₂₀ values of 45, 116, 194, and 585 mg kg⁻¹, respectively. These results show that ERT is a robust and sensitive assay for toxicity assessments and is appropriate for the Eco-SSL development. | 15. SUBJECT TERMS Barium Beryllium Manganese | Antimony Toxicity Assessment Aging/weathering | Bioavailab
Natural soi
Enchytraet | . • | Ecological Soil Screening Level | |--|---|---|------------------------|---------------------------------| | 16. SECURITY CLASSIFICA | TION OF: | 17. LIMITATION OF | 18. NUMBER OF
PAGES | 19a. NAME OF RESPONSIBLE PERSON | | 16. SECURITY CL | ASSIFICATION OF: | | 17. LIMITATION OF ABSTRACT | 18. NUMBER OF PAGES | 19a. NAME OF RESPONSIBLE PERSON Sandra J. Johnson | |-----------------|------------------|--------------|----------------------------|---------------------|---| | a. REPORT | b. ABSTRACT | c. THIS PAGE | | | 19b. TELEPHONE NUMBER (include area code) | | U | U | U | UL | 84 | (410) 436-2914 | Blank #### **PREFACE** The work described in this report was authorized under Sales Order No. 9KNM22. The work was started in February 2000 and completed in September 2002. The use of either trade or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement. This report is approved for public release. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Service. #### **Acknowledgments** This project was completed in cooperation with and from funding provided by the Engineering Field Activity Northeast (EFANE), Naval Facilities Engineering Command (Lester, PA). The authors thank Stephen J. Ells for support and assistance, and acknowledge the Ecological Soil Screening Level National Program, administered under the auspices of the Office of Solid Waste and Emergency Response (OSWER), U.S. Environmental Protection Agency (USEPA), Washington, DC. Blank ## CONTENTS | 1. | INTRODUCTION | 7 | |-------|---|----| | 2. | MATERIAL AND METHODS | 8 | | 2.1 | Test Soil | | | 2.2 | Test Chemicals | | | 2.3 | Soil Amendment Procedures | 9 | | 2.4 | Treatment Concentrations | 9 | | 2.4.1 | Range Finding Tests | 9 | | 2.4.2 | Definitive Tests | | | 2.5 | Aging/Weathering of Amended Soil | 10 | | 2.6 | Chemical Extraction and Analyses | 10 | | 2.7 | Toxicity Assessment | 11 | | 2.7.1 | Principle of the Test | 11 | | 2.7.2 | Validity of the Test | | | 2.7.3 | Culturing Conditions | 12 | | 2.7.4 | Test Performance | 12 | | 2.8 | Data Analysis | | | 3. | RESULTS | 14 | | 3.1 | Soil Analyses | 14 | | 3.2 | Range Finding Tests | 16 | | 3.3 | Definitive Tests | 17 | | 4. | DISCUSSION | 19 | | 5. | CONCLUSIONS | 22 | | | LITERATURE CITED | 25 | | | APPENDIXES | | | | A - RANGE FINDING TESTS DATA | 29 | | | B - DEFINITIVE TESTS DATA | 37 | | | C - CONCENTRATION-RESPONSE CURVES FOR REPRODUCTION ENDPOINT DETERMINED FROM ERT USING JUVENILE PRODUCTION DATA IN AGED AMENDED SSL SOIL | | | | D - STATISTICAL ANALYSES OF THE DEFINITIVE TESTS DATA | | ### **TABLES** | 1. | Physical and chemical characteristics of Sassafras sandy loam soil analyzed by the Cooperative Extension Service, University of Maryland Soil Testing Laboratory, College Park, MD | |----|---| | 2. | Nominal barium, beryllium, manganese, and antimony concentrations selected for definitive toxicity studies with <i>E. crypticus</i> , as determined from range finding tests | | 3. | Nominal and measured concentrations of metals in soil following a three-week aging/weathering procedure for total beryllium, manganese, barium, and antimony amended individually in SSL soil. Measured concentrations were determined using USEPA Method 200.8 and inductively coupled plasma mass spectrometry (ICP-MS) | | 4. | Exchangeable manganese fractions during 18-week aging/weathering study using SSL soil amended with manganese sulfate | | 5. | Summary of soil pH data following a three-week aging/weathering procedure determined in studies of beryllium, manganese, antimony, and barium amended individually in SSL soil | | 6. | Ecotoxicological parameters (mg kg ⁻¹) for adult <i>E. crypticus</i> survival determined in aged/weathered SSL soil independently amended with beryllium, manganese, antimony, and barium using Enchytraeid Reproduction Test | | 7. | Ecotoxicological parameters (mg kg ⁻¹) for juvenile production determined in aged/weathered SSL soil independently amended with beryllium, manganese, antimony, and barium using Enchytraeid Reproduction Test; parenthetical values are 95% confidence intervals | #### TOXICITY ASSESSMENTS ### OF ANTIMONY, BARIUM, BERYLLIUM, AND MANGANESE FOR DEVELOPMENT OF ECOLOGICAL SOIL SCREENING LEVELS (ECO-SSL) USING ENCHYTRAEID REPRODUCTION BENCHMARK VALUES #### 1. INTRODUCTION The U.S. Environmental
Protection Agency (USEPA) is developing Ecological Soil Screening Levels (Eco-SSLs) for ecological risk assessment of contaminants at Superfund sites. Eco-SSLs are soil concentrations of chemicals which, when not exceeded, will theoretically protect terrestrial ecosystems from unacceptable harmful effects. They are derived using data generated from laboratory toxicity tests with different test organisms, which represent the vast array of ecological receptors. Whenever sufficient quantity and quality of information existed, Eco-SSLs for soil invertebrates were developed from studies reported in literature. However, insufficient information to generate Eco-SSLs for barium (Ba), beryllium (Be), Manganese, (Mn), and antimony (Sb) necessitated standardized toxicity testing to fill the data gaps. This study was designed to produce benchmark data for the development of an Eco-SSL for Ba, Be, Mn and Sb for soil invertebrates, and meet specific criteria (USEPA, 2000), including: (1) tests were conducted in soil having physico-chemical characteristics that support relatively high bioavailability of metals; (2) experimental designs for laboratory studies were documented and appropriate; (3) both nominal and analytically determined concentrations of chemicals of interest were reported; (4) tests included both negative and positive controls; (5) chronic or life cycle tests were used; (6) appropriate chemical dosing procedures were reported; (7) concentration-response relationships were reported; (8) statistical tests used to calculate the benchmark and level of significance were described; and (9) the origin of test species were specified and appropriate. Several soil invertebrate toxicity tests, for which standardized protocols have been developed, can effectively be used to assess the toxicity and to derive protective benchmark values for metals (Stephenson *et al.*, 2002; Løkke and Van Gestel, 1998). We used the Enchytraeid Reproduction Test in this study. This test was selected on the bases of its ability to measure chemical toxicity to ecologically relevant test species during chronic assays, and its inclusion of at least one reproductive component among the measurement endpoints. Special consideration in assessing chemical toxicity for Eco-SSL development was given to the effects of aging/weathering of soil contaminants on the exposure of relevant ecological receptors, as commonly occurs at Superfund sites. During chemical aging/weathering in soil, reduction in the exposure to the chemical may occur due to volatilization, microbial degradation and immobilization, or other fate processes (e.g., photodecomposition, hydrolysis, and hysteresis, etc.). This can result in a dramatic reduction in the amount of chemical that is bioavailable, compared to tests conducted with freshly-amended chemicals or those tested following a short equilibration period (e.g., 24 h). Standardized methods for aging/weathering of chemicals in soil are not available. We used the approach developed to simulate at least partially, the aging and weathering process that included exposing soils amended with chemicals to periodic alternating wetting and air-drying cycles for three weeks, in a green house. #### 2. MATERIAL AND METHODS #### 2.1 <u>Test Soil.</u> A natural soil, Sassafras sandy loam [Fine-loamy, siliceous, mesic Typic Hapludult] (SSL) was used in this study to assess the toxicity of test chemicals to *E. crypticus*. This soil was selected for developing ecotoxicological values protective of soil biota because it has physical and chemical characteristics supporting relatively high bioavailability of the test chemicals (low pH, organic matter and clay contents). The SSL soil was collected from an open grassland field on the property of the U.S. Army Aberdeen Proving Ground (APG; Edgewood, MD). Vegetation and the organic matter horizon were removed to just below the root zone and the top six inches of the A horizon were then collected. The soil was sieved through a 5mm² mesh screen, air-dried for at least 72h and mixed periodically to ensure uniform drying, passed through a 2-mm sieve, then stored at room temperature before use in testing. Soil was then analyzed for physical and chemical characteristics by the Cooperative Extension Service, University of Maryland Soil Testing Laboratory, College Park, MD. Results of these analyses are presented in Table 1. Table 1. Physical and chemical characteristics of Sassafras sandy loam soil analyzed by the Cooperative Extension Service, University of Maryland Soil Testing Laboratory, College Park, MD. | Soil Parameter | Sassafras Sandy Loam | |---------------------------|----------------------| | Sand % | 71 | | Silt % | 71 | | Clay % | 18
11 | | Texture % | Sandy loam | | CEC cmol kg ⁻¹ | 4.27 | | Organic matter % | 1.2 | | pН | 5.0 | ## 2.2 <u>Test Chemicals</u>. The goal of this study was to determine the toxicity of Ba, Be, Mn, and Sb to E. crypticus. The assessment was done using sulfate salts, including BaSO₄ (CAS #7727-43-7, 97%; stock #13989; lot #I10J20, Alfa Aesar), BeSO₄*4H₂O (CAS #7787-56-6, 99.99%; stock #16104; lot #H09J07, Alfa Aesar), MnSO₄*H₂O (CAS #10034-96-5, ACS, 98.0-101.0%, stock #33341; lot #I18I29, Alfa Aesar), and Sb₂(SO₄)₃ (CAS #7446-32-4, 97%, stock #33492; lot #L21I28, Alfa Aesar). Additional tests were done for Ba and Sb to determine how carrier salts and their relative solubilities affect the toxicity to *E. crypticus*. For Ba, these compounds including BaO (CAS #1304-28-5, 97%, lot #12101BI, Aldrich Chemical Company), Ba(NO₃)₂ (CAS #10022-31-8, ACS, lot #000420, Fisher Scientific Co.), and Ba(C₂H₃O₂)₂ (CAS #543-80-6, ACS, lot #995963, Fisher Scientific Co.). For Sb, we used antimony D-tartrate Sb₂(C₄H₄O₆)₃*6H₂O (CAS # 126506-93-2, lot #111004-2, Pfaltz & Bauer). The positive control used in this study was 4-Nitrophenol (CAS #100-02-7, 98%, lot #6623HE, Aldrich). The main carrier salt control was sulfate as CaSO₄*2H₂O (CAS #10101-41-4, ACS, Reagent grade 100%, lot #C07704, J.T. Baker). ASTM type I water (American Society of Testing and Materials, http://www.astm.org) obtained using Milli-RO[®] 10 Plus followed by Milli-Q[®] PF Plus systems (Millipore[®], Bedford, MA) was used throughout the studies. #### 2.3 Soil Amendment Procedures. Treatment concentrations for toxicity tests with all sulfate salts and barium oxide were prepared by adding test chemicals to SSL soil in appropriate proportions to achieve nominal target concentrations. Soil was mixed for three hours on a three dimensional rotary mixer. After mixing, soil was hydrated with ASTM type I water to 100% of the soil water holding capacity (WHC; 18% water, on a the basis of the dry soil mass) for toxicity testing, or 60% of the WHC for the aging/weathering procedure. Soil prepared for range finding toxicity tests was allowed to equilibrate for 24 hours before exposing potworms. The exception was soil amended with barium acetate, which was incubated for 5 days before exposing potworms to allow acetate degradation by soil microbes. Treatment concentrations of Ba(C₂H₃O₂)₂, Ba(NO₃)₂ and Sb₂(C₄H₄O₆)₃ were prepared by dissolving appropriate amounts of each chemical in ASTM type I water, then hydrating pre-weighed amounts of SSL soil to achieve target treatment concentrations in soil for each chemical, respectively, at the required moisture level. #### 2.4 Treatment Concentrations. #### 2.4.1 Range Finding Tests Range finding tests for Ba, Be, Mn, and Sb were initially conducted using BaSO₄, BeSO₄, MnSO₄, and Sb₂(SO₄)₃. Concentrations of Ba and Mn were 100, 500, 1000, 5000 and 10000 mg kg⁻¹. Concentrations of Be and Sb were 1, 10, 100, 500 and 1000 mg kg⁻¹. Additional range finding testing for Ba using BaO, Ba(NO₃)₂ and Ba(C₂H₃O₂)₂, and for Sb using Sb₂(C₄H₄O₆)₃, were done using the same concentrations as for the sulfate salts. #### 2.4.2 Definitive Tests Data from the range finding tests were used to determine the respective chemical form with higher toxicity values for *E. crypticus*, and to determine treatment concentrations for definitive tests. Additional considerations in the selection of the chemical form for definitive toxicity testing was given to chemical solubility in water and the effect each chemical form had on soil pH level. Concentrations selected for definitive tests are shown in Table 2. Table 2. Nominal barium, beryllium, manganese, and antimony concentrations selected for definitive toxicity studies with *E. crypticus*, as determined from range finding tests. | Chemical | Ba | Be | Mn | Sb | |-----------------------|-------------|-----|-----|------| | First positive | | | | | | concentration tested: | | | | | | 1 | 451 | 10 | 10 | 100 | | 2 | 597 | 14 | 18 | 140 | | 3 | 686 | 20 | 31 | 196 | | 4 | 78 9 | 27 | 54 | 274 | | 5 | 907 | 38 | 94 | 384 | | 6 | 1043 | 54 | 164 | 538 | | 7 | 1200 | 75 | 287 | 753 | | 8 | 1314 | 105 | 503 | 1054 | | 9 | 1551 | | | | | 10 | 1830 | | | | Controls included positive (30 mg kg⁻¹ 4-Nitrophenol), negative (no chemical added) and sulfate (CaSO₄). Sulfate controls were based on estimated sulfate amounts in highest treatment concentrations, and were 7,000 and 35,000 mg kg⁻¹ SO₄²⁻, respectively. Four replicates were used for each treatment concentration and controls. # 2.5 <u>Aging/Weathering of Amended Soil</u>. All soil treatment concentrations and negative controls were subjected to simulated aging/weathering procedure, which included alternating wetting/air-drying cycles for three weeks prior to commencement of definitive tests. Aging/weathering of test soils was conducted in open plastic bags in the green house. Soil treatments were initially hydrated to 60% of water holding capacity (WHC), and then allowed to begin drying. All soil treatments were weighed and adjusted to 60% of WHC twice each week, and afterward brought to 100% of WHC (18% water, on the basis of the dry soil mass) for initiation of bioassays. A separate study was conducted using Mn as
a model chemical to determine if the three-week duration of aging/weathering procedure was adequate. The duration of this study was 18 weeks. Nominal Mn treatment concentrations included 0, 10, 18, 31, 54, 94, 164, 287, and 503 mg kg⁻¹. Samples from each treatment concentration were analyzed for exchangeable Mn concentrations at three-week intervals to determine if increase in duration of aging/weathering procedure beyond three weeks affects exchangeable Mn concentrations (directly related to bioavailable Mn). ## 2.6 <u>Chemical Extraction and Analyses.</u> Soil was analyzed for total metal concentrations following USEPA Method 200.8 (USEPA, 1994) using inductively coupled plasma mass spectrometry (ICP-MS). Additional analysis was done to determine exchangeable Mn fraction. Exchangeable Mn was extracted from soil using $0.05M\,\text{CaCl}_2$ with agitation on a reciprocating shaker for 24h. All reagents used in extraction of chemicals from soils were either reagent or trace metal grade, and ASTM type I water was used throughout the analytical studies. Glassware was washed with phosphate-free detergent followed by rinses with tap water, ASTM type I water, nitric acid 1% (v/v) and finally again with ASTM type I water. Analyses of exchangeable Mn concentrations were conducted using a Perkin-Elmer 5100 PC Atomic Absorption Spectrophotometer equipped with an AS-90 autosampler. #### 2.7 <u>Toxicity Assessment.</u> The Enchytraeid Reproduction Test (ERT) was used to assess the effects of Ba, Be, Mn and Sb on the reproduction of the enchytraeid worm Enchytraeus crypticus. The test is an application of the ISO/CD 16387 (Draft). Soil quality — Effects of pollutants on Enchytraeidae (Enchytraeus sp.) — Determination of effects on reproduction and survival (January 2001). The ERT is a Chronic/Life-Cycle Assay. The ISO Guideline for this assay was originally developed for use with Artificial Soil (USEPA Standard Artificial Soil), however our research showed that this test could also be conducted using natural soils (Kuperman and Simini, 1999). The ISO ERT was designed using the enchytraeid worm species Enchytraeus albidus. Results of our previous studies using E. albidus showed that this species requires soils containing high organic matter content with a soil pH 6 (\forall 0.5) for optimal test conditions. This species performed poorly in natural soils with physical and chemical characteristics that support a higher level of metal bioavailability (Kuperman and Simini, 1999). The species of Enchytraeidae, E. crypticus, listed in the ISO protocol as an acceptable alternative to E. albidus, was selected for toxicity testing. #### 2.7.1 Principle of the Test Adult *E. crypticus* are exposed to a range of concentrations of the test chemical added to soil. The test consists of two steps. They are a range finding test in which adult survival and total number of juveniles produced are assessed using few treatment concentrations (five) and reduced number of replicates (two), and a definitive test in which the same endpoints are assessed using greater number of concentrations and replicates. The duration of each test is four weeks. After the first two weeks, the adult worms are removed, counted, and any morphological changes are recorded. After an additional two-week incubation, the number of juveniles produced is counted. The number of adults and juveniles in treatment concentrations are compared to numbers in the control(s) to quantify ecotoxicological parameters. These parameters include the bounded No Observed Effect Concentration (NOEC), the bounded Lowest Observed Effect Concentration (LOEC) and the effective concentration that causes a p percent reduction in juvenile numbers, i.e. ECp (e.g. EC_{20} , EC_{50}). #### 2.7.2 Validity of the Test The validity criteria are included in the test as part of the Quality Control procedures. They include the following performance parameters for the negative controls: - (1) The adult mortality does not exceed 20% after 14 days, in the range finding and definitive tests - (2) The average number of juveniles is higher than 25 per test container at the end of the test assuming that 10 adult worms per test container were used - (3) The coefficient of variation for the mean number of juveniles is ≤50% at the end of the test #### 2.7.3 Culturing Conditions Enchytraeids were bred in 4.3-L clear plastic boxes (34 x 20 x 10 cm) filled with 2 kg (dry mass) SSL soil. The culture was kept in an incubator at 22±1°C with continuous light. Soil moisture level was adjusted to 100% of WHC, and was maintained by periodic (once per week) mass checks and water adjustments. Soil in the breeding culture was aerated by carefully mixing it once per week. The potworms were fed approximately twice a week with a proper amount of ground oats spread on the soil surface. If food from the previous feeding date remained on the soil surface, the amount of food given was adjusted. Every 2-3 months, the worms were transferred into a freshly prepared culture substrate. Culturing conditions were regarded satisfactory if: - (1) Worms did not try to leave soil - (2) They moved quickly through the soil - (3) They exhibited a shiny outer surface without soil particles clinging to it - (4) They were whitish in color - (5) Worms of different ages were present The worm culture was considered healthy if worms reproduced continuously. #### 2.7.4 Test Performance Glass test containers (42 mm ID; 45 mm deep) were rinsed with acetone, tap water, and ASTM type I water before the test. Twenty grams of prepared soil hydrated to 100% of WHC were added to each test container and 0.05 g of grounded oats were mixed with soil. The mass of each container (without lid) with soil was recorded. Each treatment and controls were replicated four times for definitive tests (two for range finding tests). Soil was allowed to equilibrate 24 hours in the range finding test. Definitive tests were conducted using soil subjected to simulated aging/weathering procedure for three weeks. Enchytraeid adults with eggs in the clitellum region were collected from culture established in the same soil type (SSL) as soil used in the test. The selected worms were placed in a petri dish filled with a small amount of ASTM type I water for examination using a stereomicroscope. Worms with no eggs were discarded. Any invertebrates living in the cultures such as mites were also removed. Ten enchytraeid worms selected for uniformity (approximately 1 cm) were placed on top of prepared soil in each test container. Test containers were placed randomly on trays and incubated at $21\pm1^{\circ}$ C with continuous light cycle. The containers were weighed once a week and the mass loss was replenished with the appropriate amount of ASTM type I water. Ground oats (0.05 g) were added to each test container at that time. After two weeks, soil in each test container was carefully searched and adult worms were removed and counted. Worms were examined for any morphological or behavioral changes. The remaining test substrate, including any cocoons laid during the first two weeks of the test, was incubated for additional two weeks. After four weeks from the start of the test, soil in the test containers was fixed with 70% ethanol, and seven drops of Rosebengal biological stain (1% solution in ethanol) was added. Staining continued for minimum of 24 hours. The content of each test container was wet-sieved on No. 100 (150 um) mesh and transferred to a counting tray and worms were counted. Measurement endpoints included number of surviving adults after 14 days and number of juveniles produced after 28 days. #### 2.8 <u>Data Analysis</u>. Adult survival and reproduction data were analyzed using nonlinear regression models, described in Stephenson *et al.* (2000). Histograms of the residuals and stemand-leaf graphs were examined to ensure that normality assumptions were met. Variances of the residuals were examined to decide whether or not to weight the data, and to select potential models. The logistic (Gompertz) model had the best fit for data in all toxicity tests. The fit of the line was closest to the data points, the variances were the smallest, and the residuals had the best appearance (i.e., most random scattering). There were the megaphone-shaped patterns in the "residual vs. concentration" graphs for Mn and Sb, suggesting potential heteroscedasticity (Appendix D). Additional analyses were done with data weighted with the inverse of the variances of each concentration. These produced no appreciable difference in the confidence intervals and only minor differences in the endpoint estimates. Based on these results the Gompertz-modeled analyses were left unweighted. The model is: $$Y = a \times e^{([\log(1-p)] \times [C/\text{ECp}] \wedge b)}$$ where Y is the number of adults or juveniles produced, a is the control response, e is the base of the natural logarithm, p is the percent inhibition/100 (e.g., 0.5 for EC₅₀), C is the exposure concentration in test soil, ECp is the estimate of effect concentration for a specified percent effect, and b is the scale parameter. The ECp parameters used in this study included the metal concentration producing a 20% (EC₂₀) or 50% (EC₅₀) reduction in the measurement endpoint. The EC₂₀ parameter based on a reproduction endpoint is the preferred parameter for deriving soil invertebrate Eco-SSL benchmarks. The EC₅₀, more commonly used in the past, and survival data were included to enable comparisons of the results produced in this study with results reported by other researchers. The asymptotic standard error (a.s.e.) and 95% confidence intervals (CI) associated with the point estimates were determined. Analysis of Variance (ANOVA) was used to determine the bounded No Observed Effect Concentration (NOEC) and Lowest Observed Effect Concentration (LOEC) values for adult survival or juvenile production data (Appendix D). Mean separations were done
using Fisher's Least Significant Difference (LSD) pairwise comparison tests. A significance level of P < 0.05 was accepted for determining the NOEC and LOEC values. When NOAEC (bounded no observed adverse effect concentration) or LOAEC (bounded lowest observed adverse effect concentration) values were determined, the same statistical methods were used. All analyses were done using measured metal concentrations. Statistical analyses were performed using SYSTAT 7.0.1 (SPSS, 1997). #### 3. RESULTS #### 3.1 <u>Soil Analyses</u>. Analysis of negative control soil showed that beryllium concentration in natural SSL soil used in this study was below method detection limit (MDL) of 2.5 mg kg⁻¹. Total beryllium concentrations in the experimental treatments ranged from 95 to 124% and averaged 107% of nominal (Table 3). The natural background manganese concentration determined in the negative control treatment was 94 mg kg⁻¹. Total extractable manganese concentrations (in excess of background) in the experimental treatments ranged from 50 to 117% and averaged 94% of nominal (Table 3). Exchangeable Mn fraction expressed as percent of total concentration increased with increasing soil Mn loads (Table 3). There were no trends within any treatment concentration in the amount of exchangeable Mn fraction beyond three weeks during the 18-week aging/weathering study (Table 4). These results confirmed that the three-week duration for simulated aging/weathering procedure used in to the definitive study design was adequate for the Eco-SSL benchmark development. Analytical procedures for antimony determination did not confirm agreement with the nominal treatment concentrations. Total antimony treatment concentrations determined using USEPA Method 200.8 ranged from 4 to 21% and averaged 8% of nominal concentration. These results showed that this standard method was not sufficient for total Sb analysis in SSL soil. Additional effort was made in the attempt to improve the analytical procedure. Soils were digested using procedures described in SW-846 Method 3050B (USEPA, 1996). This improved the efficiency of antimony extraction, however it remained relatively low and averaged 58% of nominal concentration added to the soil. For this reason, nominal Sb concentrations were used in determining ecotoxicological parameters for antimony; however because ERA relies on the determination of chemical concentrations extracted from soil, toxicity parameters determined from nominal concentrations may have to be adjusted to 58% of their values before determining an Sb Eco-SSL to best conservatively-correspond to the level of Sb extracted from soil at specific levels of Sb toxicity in soil. The natural background barium concentration determined in the negative control treatment was 34 mg kg⁻¹. Total barium concentrations (in excess of background) in the experimental treatments ranged from 88 to 134% and averaged 110% of nominal (Table 3). The SSL soil pH value of 5.29 was within the range of Eco-SSL's soil matrix of properties that support high bioavailability of cationic metals in natural soils. Soil pH generally decreased with increasing chemical loads but the decrease did not exceed one pH unit for Be, Mn, and Ba treatments (Table 5). The decrease in the highest Sb treatment was 1.2 pH unit compared with untreated SSL soil (negative control). In the sulfate control, soil pH decreased by less than 1.0 pH unit in both 7000 and 35000 mg kg⁻¹ SO₄²⁻ treatments compared with negative control. Table 3. Nominal and measured concentrations of metals in soil following a three-week aging/weathering procedure for total beryllium, manganese, barium, and antimony amended individually in SSL soil. Measured concentrations were determined using USEPA Method 200.8 and inductively coupled plasma mass spectrometry (ICP-MS). | | Beryllium | 1 | | Manganes | e | | Barium | | | Antimon | У | |--------------------------------|---------------------------------|----------|--------------------------------|---------------------------------|----------|--------------------------------|---------------------------------|----------|--------------------------------|---------------------------------|-----------------------| | Nominal
mg kg ⁻¹ | Measured
mg kg ⁻¹ | Recovery | Nominal
mg kg ⁻¹ | Measured
mg kg ⁻¹ | Recovery | Nominal
mg kg ⁻¹ | Measured
mg kg ⁻¹ | Recovery | Nominal
mg kg ⁻¹ | Measured
mg kg ⁻¹ | Recovery [§] | | 0 | 2.5* | | 0 | 94 | | 0 | 34 | | 0 | 2.5* | | | 10 | 12 | 95** | 10 | 99 | 50** | 451 | 433 | 88** | 100 | 6.4 | 4 | | 14 | 18 | 111 | 18 | 110 | 89 | 597 | 744 | 119 | 140 | 12 | 7 | | 20 | 24 | 108 | 31 | 119 | 80 | 686 | 689 | 95 | 196 | 17 | 7 | | 27 | 36 | 124 | 54 | 157 | 117 | 789 | 791 | 96 | 274 | 9.6 | 3 | | 38 | 43 | 107 | 94 | 191 | 103 | 907 | 843 | 89 | 384 | 27 | 6 | | 54 | 57 | 101 | 164 | 267 | 105 | 1043 | 1429 | 134 | 538 | 37 | 6 | | 75 | 83 | 107 | 287 | 386 | 102 | 1200 | 1333 | 108 | 753 | 157 | 21 | | 105 | 110 | 102 | 503 | 644 | 109 | 1314 | 1798 | 134 | 1054 | 135 | 13 | | | | | | | | 1551 | 2000 | 127 | | | | | | | | | | | 1830 | 2111 | 113 | | | | ^{*} Method Detection Limit is reported when no metal amount could be determined in negative control soil. ^{**} Percent recovery was determined after correcting metal concentration in treatment soils for the amount present in negative control soil. Using USEPA Method 3050B on selected samples yielded 58% recovery, on average. Table 4. Exchangeable manganese fractions during 18-week aging/weathering study using SSL soil amended with manganese sulfate. | Nominal Mn | | Exchangeable Mn fraction (% of total) | | | | | | | | |-------------------------------------|--------|---------------------------------------|--------|---------|---------|---------|-------------------|--|--| | treatment
(mg kg ⁻¹) | Week 3 | Week 6 | Week 9 | Week 12 | Week 15 | Week 18 | mean (% of total) | | | | 0 | 5.4 | 4.9 | 7.3 | 6.6 | 6.2 | 7.7 | 6.4 | | | | 10 | 18.0 | 16.3 | 19.9 | 20.1 | 16.3 | 17.8 | 18.1 | | | | 18 | 27.1 | 25.6 | 28.7 | 30.1 | 23.5 | 27.9 | 27.2 | | | | 31 | 42.3 | 37.3 | 39.1 | 44.2 | 38.8 | 40.5 | 40.4 | | | | 54 | 60.1 | 52.4 | 54.9 | 60.4 | 48.5 | 54.5 | 55.1 | | | | 94 | 85.8 | 75.9 | 76.0 | 82.4 | 65.3 | 76.7 | 77.0 | | | | 164 | 75.2 | 63.9 | 66.7 | 70.7 | 56.3 | 68.9 | 66.9 | | | | 287 | 106.3 | 93.8 | 94.3 | 98.5 | 82.2 | 95.8 | 95.2 | | | | 503 | 127.3 | 99.8 | 104.7 | 110.4 | 101.7 | 90.3 | 105.7 | | | Table 5. Summary of soil pH data following a three-week aging/weathering procedure determined in studies of beryllium, manganese, antimony, and barium amended individually in SSL soil. | Be | | Mn | | Sb | <u></u> | Ba | | |-----------|------|-----------|------|--------------|---------|-----------|------| | treatment | pН | treatment | pН | treatment | pН | treatment | pН | | 0 | 5.29 | 0 | 5.29 | 0 | 5.29 | 0 | 5.29 | | 10 | 5.01 | 10 | 5.39 | 100 | 5.11 | 451 | 4.72 | | 14 | 4.95 | 18 | 5.35 | 140 | 4.99 | 597 | 4.63 | | 20 | 4.89 | 31 | 5.30 | 196 | 4.85 | 686 | 4.63 | | 27 | 4.76 | 54 | 5.22 | 274 | 4.76 | 789 | 4.54 | | 38 | 4.63 | 94 | 5.14 | 384 . | 4.68 | 907 | 4.50 | | 54 | 4.51 | 164 | 5.06 | 538 | 4.56 | 1043 | 4.48 | | 75 | 4.45 | 287 | 4.96 | 753 | 4.35 | 1200 | 4.45 | | 105 | 4.29 | 503 | 4.86 | 1054 | 4.08 | 1314 | 4.44 | | | | | | | | 1551 | 4.38 | | | | | | | | 1830 | 4.36 | # 3.2 <u>Range Finding Tests.</u> Range finding test for beryllium was conducted using BeSO₄*4H₂O (cold water solubility 42.5 g per 100 cc). Adult survival decreased by 58% at 100 mg kg⁻¹ and juveniles production decreased by 18% at 10 mg kg⁻¹. There was a 99.9 % reduction in juvenile numbers at the 100 mg kg⁻¹ treatment concentration. No surviving adults or juveniles were recovered in 500 and 1000 mg kg⁻¹ treatment concentrations (Appendix A). Beryllium sulfate hydrate was retained for the definitive test, using Be concentrations shown in Table 3. Range finding test for manganese was conducted using MnSO₄*H₂O. Adult survival decreased by 10% at 500 mg kg⁻¹ and by 95% at 1,000 mg kg⁻¹. Juvenile production decreased by 33% at 100 mg kg⁻¹. There were no surviving adults above 1,000 mg kg⁻¹ or juveniles above the 100 mg kg⁻¹ treatment concentrations (Appendix A). Manganese sulfate monohydrate (MnSO₄*H₂O) was retained for the definitive test, using Mn concentrations shown in Table 3. Range finding test for antimony was conducted using $Sb_2(SO_4)_3$ and antimony D-tartrate [$Sb_2(C_4H_4O_6)_3*6H_2O$] to determine if a carrier salt form affects Sb toxicity to *E. crypticus*. Significant (P=0.001) reduction in juvenile production at 538 mg kg⁻¹ antimony D-tartrate resulted only in 18% decrease compared with negative control. Numbers of juveniles in the preceding treatment concentration of 384 mg kg⁻¹ were actually 13% higher compared with negative control (Appendix A). Toxicity of antimony sulfate to *E. crypticus* juvenile production was higher compared with antimony D-tartrate (Appendix A). The reduction in juvenile production at 500 mg kg⁻¹ Sb as $Sb_2(SO_4)_3$ was 62% (P < 0.0001). Antimony sulfate was chosen for the definitive test, using Sb concentrations shown in Table 3. Range finding test for barium was initially conducted using BaSO₄ salt. This test showed that even at the highest concentration tested (10,000 mg kg⁻¹), this form of barium is essentially insoluble in water, and did not affect adult survival after 14 days. Toxicity to juveniles after 28 days was low at the same concentration resulting only in a 36% reduction in juvenile numbers compared with control (Appendix A). Such low percent reduction in the reproductive endpoint would not have allowed ECp determination at the 50% level in the definitive test. This necessitated additional range finding tests to determine Ba toxicity to E. crypticus with alternative Ba forms. These tests were done using Ba forms soluble in water, including BaO, Ba(NO₃)₂, and Ba(C₂H₃O₂)₂. All three barium forms produced
LOEC_{iuveniles} at 1.000 mg kg⁻¹ and 100% mortality at 5,000 mg kg⁻¹ (Appendix A). Both BaO and Ba(C₂H₃O₂)₂ amendments increased soil pH levels beyond boundaries required by the Eco-SSL guidance for soil parameters supporting high cationic metal bioavailability. Barium oxide increased soil pH to 8.69 and barium acetate increased soil pH to 8.61 at 5,000 mg kg⁻¹, respectively. Soil pH in the barium nitrate test decreased to 4.12 in the 5,000 mg kg⁻¹ treatment. Additionally, reproductive toxicity of Ba added as Ba(NO₃)₂ was higher compared with the other two Ba forms. Percent reductions from control at the 1,000 mg kg⁻¹ treatment were 83.4, 50.6, and 29.6 in Ba(NO₃)₂, BaO and Ba(C₂H₃O₂)₂ tests, respectively. Based on the results of these range finding tests barium nitrate was selected for the definitive test using Ba concentrations shown in Table 3. #### 3.3 Definitive Tests. Test results complied with the validity criteria defined in the test guideline. Mean adult survival in negative controls ranged from 97.5 to 100%. The mean juvenile production in negative controls ranged from 735 to 1104 juveniles, and the coefficient of variation ranged from 6 to 18%. Sulfate control treatments showed no statistically significant (P > 0.05) effect on adult survival and reproductive measurement endpoints compared with negative controls. Soil pH decreased by less than 1.0 pH unit in both 7000 and 35000 mg kg⁻¹ SO₄²⁻ treatments compared with negative control. These results confirmed that the toxicological effects determined in the definitive tests were most likely due to test metal concentrations. Direct comparisons of the results of positive control are not possible because ERT is a new test and no reference values are available from the literature. Limited information available from our earlier studies of 4-nitrophenol with different enchytraeid species, *E. albidus*, in USEPA/OECD standard artificial soil was used as a reference for comparisons. Juvenile production in positive control was within the range of previous study resulting in 66% reduction from negative control. Definitive tests with aged/weathered SSL soil using the Enchytraeid Reproduction Tests were conducted to assess the effects of Ba, Be, Mn, or Sb on the reproduction of the enchytraeid worm *E. crypticus*. Adult *E. crypticus* were exposed in SSL soil to a range of concentrations for each metal, in independent investigations. Measurement endpoints were assessed using 8-10 treatment concentrations determined from the range-finding studies and included number of surviving adults after 14 days and number of juveniles after 28 days. All ecotoxicological parameters for Ba, Be, and Mn were estimated using measured chemical concentrations for each treatment level. Ecotoxicological parameters for Sb were estimated using nominal concentrations. Results showed that Be did not affect (P=0.174) adult *E. crypticus* survival up to 83 mg kg⁻¹ treatment concentration (Table 6). Adult survival in this definitive test was significantly (P < 0.0001) reduced at 110 mg kg⁻¹ (LOEC). The bounded NOEC for juvenile production was 43 mg kg⁻¹ (P=0.06). The bounded LOEC for juvenile production was 57 mg kg⁻¹ (P < 0.0001). The juvenile production EC₂₀ and EC₅₀ values for Be were, respectively 45 and 52 mg kg⁻¹ (Table 7; Figure C 1, Appendixes C, D). Table 6. Ecotoxicological parameters (mg kg⁻¹) for adult *E. crypticus* survival determined in aged/weathered SSL soil independently amended with beryllium, manganese, antimony, and barium using Enchytraeid Reproduction Test. | Endpoint | Beryllium | Manganese | Antimony* | Barium | |----------|-----------|-----------|-----------|--------| | NOEC | 83 | 191 | 384 | 1798 | | LOEC | 110 | 267 | 538 | 2000 | ^{*} Parameters determined using nominal concentrations of Sb in soil. Manganese did not affect (P=0.721) adult *E. crypticus* survival up to 191 mg kg⁻¹ concentration. Adult survival was reduced by 5% (P=0.48) at 267 mg kg⁻¹ (Table 6). Juvenile numbers were significantly (P<0.0001) higher in the 99 mg kg⁻¹ treatment compared to negative control suggesting the hormetic effect of Mn on reproduction at this exposure level. The bounded No Observed Adverse Effect Concentration (NOAEC) for juvenile production was 157 mg kg⁻¹ (P=0.52). The bounded Lowest Observed Adverse Effect Concentration (LOAEC) for juvenile production was 191 mg kg⁻¹ (P<0.0001) (Table 7). No juveniles were produced in 644 mg kg⁻¹ treatment (Appendix B). The hormetic effect at the 99 mg kg⁻¹ concentration level suggested the use of the hormetic model to estimate ECp parameters for Mn data. This model produced EC₅₀ and EC₂₀ estimates, but the fit was not good and the value for the hormetic component of the model seemed extreme. In addition, the variance was very large and the residuals distinctly displayed a pattern. Varying the parameters in the hormetic model did not improve the fit. Based on these results the Gompertz-modeled analysis was accepted for Mn data (Figure C 2, Appendixes C, D). The juvenile production EC₂₀ and EC₅₀ values for Mn were 116 and 192 mg kg⁻¹, respectively (Table 7). Antimony did not affect (P=0.407) adult *E. crypticus* survival up to 384 mg kg⁻¹ concentration. Adult survival was reduced by 50% (P<0.0001) at 538 mg kg⁻¹ (Table 6). The bounded NOEC for juvenile production was 100 mg kg⁻¹ (P=0.69). The bounded LOEC for juvenile production was 140 mg kg⁻¹ (P=0.027). The juvenile production EC₂₀ and EC₅₀ values for Sb were 194 and 316 mg kg⁻¹, respectively (Table 7; Figure C 3, Appendixes C, D). Barium did not significantly affect (P=0.467) adult *E. crypticus* survival up to 1798 mg kg⁻¹ concentration. Adult survival was reduced by 20% (P=0.006) at 2000 mg kg⁻¹ (Table 6). The bounded NOEC for juvenile production was 433 mg kg⁻¹ (P=0.597). The bounded LOEC for juvenile production was 689 mg kg⁻¹ (P=0.031). The juvenile production EC₂₀ and EC₅₀ values for Ba were, respectively 585 and 947 mg kg⁻¹ (Table 7; Figure C 4, Appendixes C, D). Table 7. Ecotoxicological parameters (mg kg⁻¹) for juvenile production determined in aged/weathered SSL soil independently amended with beryllium, manganese, antimony, and barium using Enchytraeid Reproduction Test; parenthetical values are 95% confidence intervals. | Endpoint | Beryllium | Manganese | Antimony* | Barium | |------------------|------------|---------------|---------------|----------------| | NOAEC | 43 | 157 | 100 | 433 | | LOAEC | 57 | 191 | 140 | 689 | | EC_{20} | 45 (42-49) | 116 (56-176) | 194 (155-234) | 585 (447-722) | | EC ₅₀ | 52 (50-54) | 192 (147-238) | 316 (285-347) | 947 (830-1064) | ^{*} Parameters determined using nominal concentrations of Sb in soil. #### 4. DISCUSSION Development of screening level benchmarks for Ecological Risk Assessment (ERA) of contaminated soils has become a critical need in recent years (USEPA, 2000). To address this problem, the USEPA in conjunction with stakeholders is developing Eco-SSLs to identify concentrations of chemicals in soil that, when not exceeded, theoretically protective of terrestrial ecosystems within specific soil boundary conditions from unacceptable harmful effects. An extensive review of literature (USEPA, 2000) determined that there was insufficient information for beryllium, manganese, antimony, and barium to generate Eco-SSL benchmarks for soil invertebrates. Our toxicity studies were designed to specifically fill this knowledge gap. The majority of soil toxicity tests that were reported in literature used standard artificial soil with high organic matter content (10%) and near neutral pH. In contrast, we selected SSL soil to meet the criteria for Eco-SSL development, in large part because it has characteristics supporting relatively high bioavailability of cationic metals. In addition, our aging/weathering procedure of the soils loaded with the range of metal concentrations allowed us to more realistically assess the toxicity under conditions more closely resembling the potential toxic effects of beryllium, manganese, antimony, and barium in the field. Definitive toxicity tests conducted with aged/weathered soils amended with test chemicals showed that chemical toxicity order based on EC20 for juveniles production in tests with E. crypticus was Be > Mn > Sb > Ba (Table 7). However because ERA relies on the determination of soil concentrations extracted from soil, Sb toxicity parameters determined from nominal concentrations may have to be adjusted to 58% of their values before determining an Sb Eco-SSL to best conservatively-correspond to the level of Sb extracted from soil at specific levels of Sb toxicity in soil. If the EC20 for juveniles production is adjusted by 58% to account for reduced extractability, the toxicity order for E. crypticus becomes Be > Mn = Sb > Ba. Reproductive endpoints in all tests were more sensitive compared with adult survival (Tables 6, 7). This supports the Eco-SSL requirement of the use of reproductive endpoints for benchmark development. Because this study was designed to produce benchmark data to be used in the development of Eco-SSLs for beryllium, manganese, antimony, and barium for soil invertebrates, the test conditions and the resulting data had to meet specific criteria (USEPA, 2000). Thus results from these studies may not directly compare to those of other studies in the literature, since none of them were designed to specifically quantify metal toxicity to soil invertebrates under Eco-SSL conditions of testing using soils that support relatively high bioavailability of cationic metals. Beryllium is one of the least studied metals regarding its effects on soil invertebrates, although it is considered one of the problem metals of the future (Newland, 1982). It is a component of various fossil fuel types and is increasingly used in aircraft industry, space research, nuclear energy development (Ireland, 1986), X-ray tube, windows manufacturing, and in production of non-sparking tools composed of
copper-beryllium alloy (Thorat et. al., 2001). Be concentrations in Aberdeen Proving Ground (APG) soil (including contaminated sites) in the areas adjacent to soil collection ranged from 0.3 to 1.4 mg kg⁻¹ (Hlohowskyj et al., 1999). Extensive toxicological studies of Be exposure effects in humans and experimental animals have established that it can cause pulmonary and systemic granulomatous disease known as chronic beryllium disease (Sprince and Kazami, 1980), necrosis and tumors in animals (Witschi, 1971), can inhibit certain enzymes, including alkaline phosphatase (Reiner, 1971), and can inhibit plant and animal growth (Newland, 1982). Ireland (1986) reported increased mortality and growth suppression in a terrestrial snail Achatina fulica (Pulmonata) fed 10 µg ml⁻¹ Be in the diet containing the sub-optimal calcium concentrations. Beryllium was the most toxic metal among the four chemicals tested in our study, and the estimated ecotoxicological parameters for E. crypticus are the first in the available literature for a soil invertebrate species. Natural manganese concentration in SSL soil of 94 mg kg⁻¹ was within the range of Mn concentrations reported for soils (including contaminated sites) at the Aberdeen Proving Ground, which ranged from 4.9 to 1140 mg kg⁻¹ (Hlohowskyj *et al.*, 1999). Manganese is a required nutrient essential for plants and animals. Manganese was the most previously investigated of the four metals in this study, however none of the previous studies involved invertebrate exposures in natural soils. Reinecke and Reinecke (1996) reported reduction in growth and development (measured as time needed for clitellum development) of *E. fetida* fed with cattle manure spiked with Mn at 151.7 mg kg⁻¹. This value falls within the effect concentrations range of 20-50% reduction in reproductive endpoint determined in our study. In a later study, Reinecke and Reinecke (1997) reported damage to spermatozoan structure from treatments containing food spiked with Mn at 61.57 mg kg⁻¹. Nottrot *et al.* (1987) reported no effect on feeding activity and growth of collembolan *Orchesella cincta* fed with green algae spiked with up to 25 μ mol Mn g⁻¹ dry mass, however that study was conducted on dental plaster. Joosse *et al.* (1983) reported no effect on respiration of woodlice fed with litter containing Mn at 1000 mg kg⁻¹ on a porous tile. There was no soil exposure incorporated in that study. Few studies have investigated antimony concentrations in soil (Cal-Prieto et al., 2001; Crecelius et al., 1974; Kabata-Pendias and Pendias, 1992; van der Voet and de Wolff, 1996). Reported concentrations ranged from 0.17 mg kg-1 in organic soils in Norway to 1489 mg kg⁻¹ in vicinity of an Sb smelter in northeast England (Ainsworth and Cooke, 1991), and these corresponded with treatment concentrations used in our study. Antimony concentrations in soil (including contaminated sites) at the Aberdeen Proving Ground in the areas adjacent to the location where the SSL soil was collected ranged from 0.1 to 501 mg kg⁻¹ (Hlohowskyj et al., 1999). No information could be found in the available literature on ecotoxicological effects of antimony to soil invertebrates. Developing such information is especially important since input to the soil ecosystems was estimated at 26000 t y⁻¹ of Sb (Cal-Prieto et al., 2001). This anthropogenic contribution of antimony is 10-fold higher compared with the Sb emissions from natural sources (ca. 2600 t y⁻¹) reported by Nriagu (1990). Limited data for soil biota was reported by Rafel and Popov (1988) as part of a validation effort for developing the USSR maximum allowable concentrations of antimony in soil. These authors reported 23-52% reduction in seed germination and 26-62% reduction in root growth at 1002 mg kg⁻¹ Sb in tests with barley, wheat, radish, pees, and onion. Decrease in ammonia mineralization and nitrate accumulation was observed at Sb concentrations of 52 and 102 mg kg⁻¹ in their study. Other measures of soil biological activity were also affected, including decrease in soil enzyme catalase activity and stimulation of soil respiration at 102 mg Sb kg⁻¹ (Rafel and Popov, 1988). Difficulties encountered with the efficiency of extraction of Sb that is aged/weathered in soil prior to analytical determination, using natural SSL amended with antimony, may be symptomatic of a larger problem regarding chemical characterization data during ERA activities at contaminated sites. Low Sb recovery rates using standard USEPA methods suggest that true concentrations of this metal will be underestimated during site characterization efforts. The recovery rates of 8 and 58 percent determined for Sb aged/weathered in soil in our study, using USEPA methods 200.8 and 3050B, respectively were below recovery rates of 70 and 88 percent previously reported for freshly amended soils. This clearly indicates that USEPA method 3050B appears better suited to extract aged/weathered Sb from soil at Superfund and other contaminated sites, and this potential discrepancy in extractability should be corrected for at the time of compilation of a list of contaminants of potential ecological concern (COPEC) in the screening phase of ERA. To use the ecotoxicological parameters from this study, which are based on nominal Sb values, it is recommended that these nominal Sb values be adjusted to 58% of nominal to account for the aging/weathering of Sb in soil (i.e., adjusted to 58% of nominal prior to determining the Eco-SSL). Aging/weathering of Sb in soils typically occurs even more extensively in the field, but simulated aging/weathering provides a conservative estimate of what might otherwise be extractable from field soils. This is especially important given a steep slope of the concentrationresponse curve for reproductive endpoint determined from the Enchytraeid Reproduction Test in our study (Figure C 3, Appendix C), which establishes a narrow toxicity threshold range from 194 to 316 mg kg⁻¹ (nominal) based on EC₂₀ and EC₅₀ estimates (Table 6). The 39 percent difference between these two estimates is within the potential recovery error rate of analytical methods used. Disregarding this potential error, especially without adjustment of the Eco-SSL for aging/weathering, can otherwise lead to a removal of antimony from the COPEC list while its extracted concentrations represent field concentrations toxic to relevant ecological receptors. Adjustment of the values of the ecotoxicological parameters determined from nominal concentrations, prior to determination of the Eco-SSL, is properly left to those evaluating benchmarks for Eco-SSL development; however, in these studies an adjustment to 58% of nominal corresponds to the mean recovery rate following three weeks of aging/weathering of Sb in soil. Natural barium concentration in SSL soil of 34 mg kg⁻¹ was within the Ba concentrations found in soils (including contaminated sites) at the Aberdeen Proving Ground, which ranged from 9.8 to 1580 mg kg⁻¹ (Hlohowskyj *et al.*, 1999). Limited barium ecotoxicological information for soil invertebrates is available from literature. Grace (1990) investigated oral toxicity of barium metaborate to the Eastern Subterranean Termite *Reticulitermes flavipes* (Kollar) in no-choice assays by feeding termite workers for 15 days on filter papers treated with concentrations of 500-40,00 mg kg⁻¹ (356-28,472 mg Ba kg⁻¹, recalculated by Kuperman). Results of this study comport with result of the adult survival (14 days) portion of our definitive test. Grace (1990) reported 19% mortality in 1780 mg Ba kg⁻¹ treatment, which was comparable with 20% adult mortality at 2000 mg Ba kg⁻¹ treatment observed in our investigation. However, direct comparisons of feeding assays results with soil exposure studies using different species should be treated with caution. #### 5. CONCLUSIONS This study has produced ecotoxicological data for beryllium, manganese, antimony, and barium using ecologically relevant soil invertebrate species E. crypticus. Relative toxicity of the four metals tested in this study was Be > Mn > Sb > Ba. When the EC₂₀ for juveniles production is adjusted by 58% to account for reduced extractability of Sb after three weeks of aging/weathering in soil, the toxicity order for E. crypticus becomes Be > Mn = Sb > Ba. It is strongly recommended that the nominal Sb benchmark values from this study be adjusted to 58% of nominal. To account for the aging/weathering of Sb in soil (i.e., adjusted to 58% of nominal prior to determining the Eco-SSL). Study results showed that tests based on reproductive endpoint provide a more sensitive evaluation of effect than adult survival and therefore should be used to set screening criteria. These tests were performed using a natural soil, Sassafras sandy loam. Sassafras sandy loam has relatively low pH, low organic matter, low cation exchange capacity, and high sand content. Such characteristics support relatively high bioavailability of cationic metals in soil. Furthermore, aging and weathering of the amended soil produced a soil microenvironment more similar to field conditions than previous studies where soil invertebrates were exposed immediately following amendment of soil. These study results will be provided to the Ecological Soil Screening Level (Eco-SSL) workgroup for review. Results will undergo quality control review by the Eco-SSL task group before inclusion in the Eco-SSL database, and before being used for developing Ecological Soil Screening Levels (Eco-SSLs) for Be, Mn, Sb, and Ba. Blank #### LITERATURE CITED Ainsworth, N. and Cooke, J.A. (1991). Biological significance of antimony in contaminated grassland. *Water, Air, and Soil Pollution* 57-58, 193-199. Cal-Prieto, M.J., Carlosena, A., Andrade, J.M., Martínez, M.L., Muniategui, S., López-Mahía, P. and Prada, D. (2001). Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments. *Water, Air, and Soil Pollution*
129, 333-348. Crecelius, E.A., Johnson, C.J. and Hofer, G.C. (1974). Contamination of soils near a copper smelter by arsenic, antimony and lead. *Water, Air, and Soil Pollution* 3, 337-342. Grace, J.K. (1990). Oral toxicity of barium metaborate to the Eastern Subterranean Termite (Isoptera: Rhinotermitidae). *J. Entomol. Sci.* 25 (1), 112-116. Hlohowskyj, I., Hayse, J., Kuperman, R. and Van Lonkhuyzen, R. (1999). Remedial Investigation Report for J-Field, Aberdeen Proving Ground, Maryland. Volume3: Ecological Risk Assessment. ANL/EAD/TM-81. Argonne National Laboratory, Argonne, Illinois, November 1999. Ireland, M.P. (1986). Studies on the effects of dietary beryllium at two different calcium concentrations in *Achatina fulica* (Pulmonata). *Comp. Biochem. Physiol.* 83C, No. 2, 435-438. ISO (International Standardization Organization) (2001). Soil Quality – Effects of Pollutants on Enchytraeidae (Enchytraeus sp.) – Determinations of effects on reproduction and survival. ISO CD 16387 (Draft). Joosse, E.N.G., van Capelleveen, H.E., van Dalen, L.H. and van Diggelen, J. (1983). Effects of zinc, iron and manganese on soil arthropods associated with decomposition processes. In: T.D. Lekkas (ed.), *Heavy metals in the environment*, Volume 1, CEP, Edinburgh, pp. 467-470. Kabata-Pendias, A. and Pendias, H. (1992). Trace Elements in Soils and Plants, CRC Press Inc., Florida. Kuperman, R., Simini, M., Phillips, C. and Checkai, R. (1999). Comparison of malathion toxicity using enchytraeid reproduction test and earthworm toxicity test in different soil types. *Pedobiologia* 43, 630-634. Løkke, H. and Van Gestel, C.A.M. (1998). Handbook of Soil Invertebrate Toxicity Tests. John Wiley & Sons. Newland, L.W. (1982). Arsenic, beryllium, selenium and vanadium. In: *The Handbook of Environmental Chemistry* (Hutzinger, O., ed.), Vol. 3, Part B, pp. 27-67. Springer, Berlin. Nottrot, F., Joosse, E.N.G., van Straalen, N.M. (1987). Sublethal effects of iron and manganese soil pollution on *Orchella cincta* (Collembola). *Pedobiologia* 30, 45-53. Nriagu, J.O. (1990). Global metal pollution: poisoning the biosphere? *Environment* 32, 7, 6-11, 28-33. Rafel, Yu, and Popov, Yu, (1988). Validation of maximum allowable concentrations of antimony in soil. *Gigiena i Sanitariya* 1, 63-64 (in Russian). Reinecke, S.A. and Reinecke, A.J. (1997). The influence of lead and manganese on spermatozoa of *Eisenia fetida* (Oligochaeta). Soil. Biol. Biochem. 2, 737-742. Reinecke, A.J. and Reinecke, S.A. (1996). The influence of heavy metals on the growth and reproduction of the compost worm *Eisenia fetida* (Oligochaeta). *Pedobiologia* 40, 439-448. Reiner, E. (1971). Binding of beryllium to proteins. In: *Mechanisms of Toxicity* (Aldridge, W.N., ed.), pp. 111-125. MacMillan, London. Sprince, N.L. and Kazami, H. (1980). U.S. Beryllium Case Registry through 1977. *Environmental Research* 21, 44-47. Statistical Package for the Social Sciences (1997). SYSTAT® 7.01. for Windows. Chicago, IL, USA. Stephenson, G.L., Kuperman, R.G., Linder, G. and Visser, S. 2002. The Use of Single Species Tests for Assessing the Potential Toxicity of Site Soils and Groundwater. Pp. 25-43. In: Environmental analysis of contaminated sites: Toxicological Methods and Approaches. (Sunahara, G., Renoux, A., Thellen, C., Gaudet, C. and Pilon, A. eds.). John Wiley and Sons, Ltd. Stephenson, G.L., Koper, N., Atkinson, G.F., Solomon, K.R., and Scroggins, R.P. (2000). Use of nonlinear regression techniques for describing concentration-response relationships of plant species exposed to contaminated site soils. *Environmental Toxicology and Chemistry* 19, 2968-2981. Thorat, D.D., Mahadevan, T.N., Ghosh, D.K. and Narayan, S. (2001). Beryllium concentrations in ambient air and its source identification. *Environmental Monitoring and Assessment* 69, 49-61. USEPA (2000). Ecological Soil Screening Level Guidance. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, DC July 10, 2000. USEPA (1996). Method 3050B. Acid digestion of sediments, sludges, and soils. In: Method 3050B, SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods, 3rd Ed., U.S. Environmental Protection Agency. USEPA (1994). Method 200.8. Determination of trace elements in waters and wastes by inductively coupled plasma - mass spectrometry. In: *Methods for the Determination of Metals in Environmental Samples- Supplement 1*. EPA-600/R-94-111, U.S. Environmental Protection Agency. May 1994 van der Voet, G.B. and de Wolff, F.A. (1996). Human exposure to lithium, thalium, Sb, gold, and platinum. In: *Toxicology of metals* (Chang, L., Magos, L. and Suzuki, T., eds.). CRC Press, U.S.A. Witschi, H.P. (1971). Liver cell injury by beryllium. In: *Mechanisms of Toxicity* (Aldridge, W.N., ed.), pp. 129-145. MacMillan, London. Blank #### APPENDIX A ## RANGE FINDING TESTS DATA # Range-finding invertebrate assays Fresh SSL soil Compound: Be [BeSO₄] Start Date: 21-Apr-00 Invertebrate: E. crypticus | Nominal
Be (mg/kg) | Rep | Adults 5/5/00 | MEAN
S.E. | Juveniles
5/19/00 | MEAN
S.E. | Reduction
% | |-----------------------|-----|---------------|--------------|----------------------|--------------|----------------| | O |) 1 | 10 | 9.5 | 721 | 722.5 | 0 | | 0 | 2 | 9 | 0.3 | 704 | 10.4 | | | C | 3 | 9 | | 752 | | | | C | 4 | 10 | | 713 | | | | 1 | 1 | 10 | 10 | 845 | 705 | 2.4 | | 1 | 2 | 10 | 0 | 565 | 140 | | | 10 |) 1 | 9 | 9.5 | 596 | 590.5 | 18.3 | | 10 | 2 | 10 | 0.5 | 585 | 5.5 | | | 100 |) 1 | 8 | 4 | 2 | 1 | 99.9 | | 100 |) 2 | 0 | 4 | 0 | 1 | | | 500 |) 1 | 0 | | 0 | | 100 | | 500 | | 0 | | 0 | | | | 1000 | | 0 | | 0 | | 100 | | 1000 | | 0 | | 0 | | | # Range-finding invertebrate assays Fresh SSL soil Compound: Mn [MnSO₄] Start Date: 21-Apr-00 Invertebrate: E. crypticus | Nominal
Mn (mg/kg) | Rep | Adults 5/5/00 | MEAN
S.E. | Juveniles
5/19/00 | MEAN
S.E. | Reduction % | |-----------------------|-----|---------------|--------------|----------------------|--------------|-------------| | 0 | 1 | 10 | 9.5 | 721 | 722.5 | 0 | | 0 | 2 | 9 | 0.29 | 704 | 10.43 | | | 0 | 3 | 9 | | 752 | | | | 0 | 4 | 10 | | 713 | | | | 100 | 1 | 10 | 9.5 | 503 | 486 | 32.73 | | 100 | 2 | 9 | 0.50 | 469 | 17.00 | | | 500 | 1 | 7 | 8.5 | 0 | | 100 | | 500 | 2 | 10 | 1.50 | 0 | | | | 1000 | 1 | 0 | 0.5 | 0 | | 100 | | 1000 | 2 | 1 | 0.50 | 0 | | | | 5000 | 1 | 0 | | 0 | | 100 | | 5000 | 2 | 0 | | 0 | | | | 10000 | 1 | 0 | | 0 | | 100 | | 10000 | 2 | 0 | | 0 | | | # Range-finding invertebrate assays Fresh SSL soil Compound: Sb [Sb-d-tartrate] Start Date: 18-Jan-01 Invertebrate: E. crypticus | Nominal
Sb (mg/kg) | Rep | Initial
container | Adults | Juveniles | MEAN | |-----------------------|-----|----------------------|--------|-----------|---------| | | | mass (g) | 2/1/01 | 2/15/01 | S.E. | | 0 | 1 | 96.4 | 10 | 962 | 976.75 | | 0 | 2 | 95.1 | 10 | 950 | 13.59 | | 0 | 3 | 100.5 | 10 | 1012 | | | 0 | 4 | 97.8 | 9 | 983 | | | 274 | 1 | 95.7 | 10 | 1109 | 1084.25 | | 274 | 2 | 95.8 | 10 | 1095 | 39.63 | | 274 | 3 | 95.8 | 10 | 973 | | | 274 | 4 | 95.2 | 10 | 1160 | | | 384 | 1 | 97.8 | 10 | 1112 | 1105.25 | | 384 | 2 | 100.2 | 10 | 1103 | 7.30 | | 384 | 3 | 98 | 10 | 1086 | | | 384 | 4 | 97.9 | 10 | 1120 | | | 538 | 1 | 101.6 | 10 | 884 | 801.75 | | 538 | 2 | 97.3 | 10 | 771 | 28.31 | | 538 | 3 | 94.9 | 10 | 759 | | | 538 | 4 | 95.8 | 10 | 793 | | # Range-finding invertebrate assays Fresh SSL soil Compound: Sb $[Sb_2(SO_4)_3]$ Start Date: 20-Apr-00 Invertebrate: E. crypticus | Nominal
Sb (mg/kg) | Rep | Adults 5/4/00 | MEAN
S.E. | Juveniles
5/18/00 | MEAN
S.E. | Reduction
% | |-----------------------|-----|---------------|--------------|----------------------|--------------|----------------| | 0 | 1 | 10 | 9.5 | 721 | 722.5 | 0 | | 0 | 2 | 9 | 0.29 | 704 | 10.43 | | | 0 | 3 | 9 | | 752 | | | | 0 | 4 | 10 | | 713 | | | | 1 | 1 | 7 | 8.5 | 642 | 728 | -0.76 | | 1 | 2 | 10 | 1.50 | 814 | 86.00 | | | 10 | 1 | 10 | 10 | 604 | 649 | 10.17 | | 10 | 2 | 10 | 0 | 694 | 45.00 | | | 100 | 1 | 10 | 10 | 615 | 667 | 7.68 | | 100 | 2 | 10 | 0 | 719 | 52.00 | | | 500 | 1 | 9 | 8.5 | 341 | 274 | 62.08 | | 500 | 2 | 8 | 0.50 | 207 | 67.00 | | | 1000 | 1 | 4 | 4 | 0 | 0 | 100 | | 1000 | 2 | 4 | 0 | 0 | 0 | | # Range-finding invertebrate assays Fresh SSL soil Compound: Ba [BaSO₄] Start Date: 20-Apr-00 Invertebrate: E. crypticus | Nominal
Ba (mg/kg) | Rep | Adults 5/4/00 | MEAN
S.E. | Juveniles
5/18/00 | MEAN
S.E. | Reduction
% | |-----------------------|-----|---------------|--------------|----------------------|--------------|----------------| | 0 | 1 | 10 | 9.5 | 721 | 722.5 | 0 | | 0 | 2 | 9 | 0.3 | 704 | 10.4 | | | 0 | 3 | 9 | | 752 | | | | 0 | 4 | 10 | | 713 | | | | 100 | 1 | 9 | 9.5 | 705 | 690 | 4.5 | | 100 | 2 | 10 | 0.5 | 675 | 15 | | | 500 | 1 | 8 | 8.5 | 435 | 513.5 | 28.9 | | 500 | 2 | 9 | 0.5 | 592 | 78.5 | | | 1000 | 1 | 9 | 8.5 | 360 | 443 | 38.7 | | 1000 | 2 | 8 | 0.5 | 526 | 83 | | | 5000 | 1 | 9 | 9.5 | 515 | 563.5 | 22.0 | | 5000 | 2 | 10 | 0.5 | 612 | 48.5 | | | 10000 | 1 | 10 | 9 | 484 | 462.5 | 36.0 | | 10000 | 2 | 8 | 1 | 441 | 21.5 | | # Range-finding invertebrate assays Fresh SSL soil Compound: Ba [BaO] Start Date: 27-Jun-00 Invertebrate: E. crypticus | Nominal
Ba (mg/kg) | Rep | Adults
7-11-00 | MEAN
S.E. | Juveniles
7-25-00 | MEAN
S.E. | Reduction
% | |-----------------------|-----|-------------------|--------------|----------------------|--------------|----------------| | 0 | 1 | 10 | 9.75 | 679 | 702.25 | 0 | | 0 | 2 | 10 | 0.25 | 712 | 30.01 | _ | | 0 | 3 | 9 | | 638 | | | | 0 | 4 | 10 | | 780 | | | | 100 | 1 | 10 | 10 | 612 | 621.5 | 11.50 | | 100 | 2 | 10 | 0 | 631 | 9.5 | | | 500 | 1 | 10 | 9 | 887 | 730.5 | -4.02 | | 500 | 2 | 8 | 1 | 574 | 156.5 | | | 1000 | 1 | 1 | 1 | 385 | 347 | 50.59 | | 1000 | 2 | 1 | 0 | 309 | 38 | | | 5000 | 1 | 0 | 0 | 0 | 0 | 100 | | 5000 | 2 | 0 | 0 | 0 | 0 | | | 10000 | 1 | 0 |
0 | 0 | 0 | 100 | | 10000 | 2 | 0 | 0 | 0 | 0 | | # Range-finding invertebrate assays Fresh SSL soil Compound: Ba $[Ba(NO_3)_2]$ Start Date: 27-Sep-00 Invertebrate: *E. crypticus* | Nominal
Ba (mg/kg) | Rep | Initial container | 10/11/00 | Mean | 10/25/00 | Mean | |-----------------------|-----|-------------------|----------|------|-----------|--------| | | | mass (g) | Adults | S.E. | Juveniles | S.E. | | 0 | 1 | 91.22 | 10 | 10 | 1275 | 1261.5 | | 0 | 2 | 91.82 | 10 | 0 | 1248 | 13.5 | | 100 | 1 | 96.7 | 10 | 10 | 1530 | 1598.5 | | 100 | 2 | 90.5 | 10 | 0 | 1667 | 68.5 | | 500 | 1 | 90.31 | 10 | 9.5 | 1310 | 1159.5 | | 500 | 2 | 95.47 | 9 | 0.5 | 1009 | 150.5 | | 1000 | 1 | 90.63 | 10 | 10 | 276 | 209 | | 1000 | 2 | 96.48 | 10 | 0 | 142 | 67 | | 5000 | 1 | 91.12 | 0 | | 0 | | | 5000 | 2 | 90.3 | 0 | | 0 | | | 10000 | 1 | 90.83 | 0 | | 0 | | | 10000 | 2 | 92.76 | 0 | | 0 | | # Range-finding invertebrate assays Fresh SSL soil Compound: Ba $[Ba(C_2H_3O_2)_2]$ Start Date: 2-Oct-00 Invertebrate: *E. crypticus* Nominal Rep Initial 10-16-00 10-30-00 Mean Reduction Ba (mg/kg) container mass (g) | | | 111ass (9) | | | | | |-------|---|------------|--------|-----------|-------|--------| | | | | Adults | Juveniles | S.E. | % | | 0 | 1 | 91.75 | 10 | 859 | 893 | 0 | | 0 | 2 | 91.04 | 10 | 927 | 34 | | | 100 | 1 | 91 | 10 | 1026 | 948.5 | -6.22 | | 100 | 2 | 91.12 | 9 | 871 | 77.5 | | | 500 | 1 | 96.48 | 10 | 922 | 990 | -10.86 | | 500 | 2 | 90.62 | 9 | 1058 | 68 | | | 1000 | 1 | 90.75 | 10 | 545 | 629 | 29.56 | | 1000 | 2 | 96.42 | 8 | 713 | 84 | | | 5000 | 1 | 95.52 | 0 | 0 | 0 | 100 | | 5000 | 2 | 90.97 | 0 | 0 | 0 | | | 10000 | 1 | 96.02 | 0 | 0 | 0 | 100 | | 10000 | 2 | 93.25 | 0 | 0 | 0 | | # APPENDIX B DEFINITIVE TESTS DATA # **Definitive invertebrate assays** Aged SSL soil Compound: Be [BeSO₄] Start Date: 20-Oct-00 Invertebrate: E. crypticus | Nominal | Rep | Initial | 11/3 | Mean | 11/17 | Mean | |------------|-----|-----------|--------|------|-----------|--------| | Be (mg/kg) | | container | | | | | | | | mass (g) | Adults | S.E. | Juveniles | S.E. | | 0 | 1 | 93.01 | 10 | 10 | 1112 | 1104.3 | | 0 | | 96.36 | 10 | | 1149 | 43.069 | | 0 | 3 | 91.6 | 10 | | 1175 | 45.003 | | 0 | | 92.78 | 10 | | 981 | | | 10 | 1 | 90.83 | 10 | | 1166 | 1051.5 | | 10 | | 92.27 | 10 | | 906 | 54.216 | | 10 | 3 | 90.97 | 10 | _ | 1083 | 54.210 | | 10 | 4 | 91.53 | 10 | | 1051 | | | 14 | 1 | 95.91 | 10 | | 1164 | 1117.3 | | 14 | 2 | 96.84 | 10 | 0.25 | 1339 | 90.133 | | 14 | 3 | 96.05 | 10 | 0.20 | 1054 | 50.155 | | 14 | 4 | 90.99 | 9 | | 912 | | | 20 | 1 | 90.22 | 10 | 10 | 1208 | 1102.5 | | 20 | 2 | 90.85 | 10 | 0 | 979 | 64.888 | | 20 | 3 | 90.9 | 10 | | 1002 | | | 20 | 4 | 91.47 | 10 | | 1221 | | | 27 | 1 | 90.83 | 10 | 10 | 1095 | 1077.8 | | 27 | 2 | 92.7 | 10 | 0 | 1174 | 37.172 | | 27 | 3 | 96.59 | 10 | | 1038 | | | 27 | 4 | 96.06 | 10 | | 1004 | | | 38 | 1 | 90.78 | 10 | 10 | 1018 | 946.5 | | 38 | 2 | 90.63 | 10 | 0 | 1129 | 77.039 | | 38 | 3 | 91.19 | 10 | | 803 | | | 38 | 4 | 91.47 | 10 | | 836 | | | 54 | 1 | 92.87 | 10 | 10 | 233 | 244.5 | | 54 | 2 | 90.28 | 10 | 0 | 146 | 68.27 | | 54 | 3 | 90.67 | 10 | | 441 | | | 54 | 4 | 92.47 | 10 | | 158 | | | 75 | 1 | 90.74 | 10 | 9 | 12 | 9 | | 75 | 2 | 92.85 | 9 | 0.71 | 9 | 2.12 | | 75 | 3 | 91.18 | 10 | | 12 | | | 75 | 4 | 92.51 | 7 | | 3 | | | 105 | 1 | 97.05 | 8 | 4.5 | 1 | 1.25 | | 105 | 2 | 91.1 | 5 | 1.32 | 0 | 0.95 | | 105 | 3 | 92.92 | 2 | | 4 | | | 105 | 4 | 91.59 | 3 | | 0 | | # **Definitive invertebrate assays** Aged SSL soil Compound: Mn [MnSO₄] Start Date: 5-Jul-00 Invertebrate: E. crypticus | Nominal
Mn | Rep | Initial
container | Adults | MEAN | Juveniles | MEAN | |---------------|-----|----------------------|---------|------|-----------|-------| | (mg/kg) | | mass (g) | 7-19-00 | S.E. | 8-2-00 | S.E. | | c |) 1 | 96.7 | 9 | 9.75 | 759 | 735.3 | | C | | | 10 | | | | | C | | | 10 | | 754 | | | Ċ | | | 10 | | 756 | | | 10 | | | 10 | | | | | 10 | | | 10 | | | 75.82 | | 10 | | | 10 | | 995 | | | 10 | | | 8 | | 747 | | | 18 | | 95 | 9 | 9.5 | 684 | | | 18 | 3 2 | 90.3 | 9 | 0.29 | 662 | 41.17 | | 18 | 3 | 95.3 | 10 | | 717 | | | 18 | 4 | 89.9 | 10 | | 846 | | | 31 | 1 | 92.5 | 10 | 9.75 | | | | 31 | 2 | 90.3 | 10 | 0.25 | | | | 31 | 3 | 90.1 | 9 | | 670 | | | 31 | 4 | 95.5 | 10 | | 731 | | | . 54 | 1 | | 10 | | | | | 54 | | | 10 | | * | | | 54 | | | 10 | | 752 | | | 54 | | | 10 | | 718 | | | 94 | | | 10 | | | | | 94 | | | 9 | | | | | 94 | | | 10 | | 501 | | | 94 | | | 9 | | 291 | | | 164 | | | . 9 | | | | | 164 | | | | | | | | 164 | | | 9 | | 293 | | | 164 | | | 9 | | 204 | | | 287 | | | 7 | | | | | 287 | | | 2 | | | | | 287 | | | 4 | | 29 | | | 287 | | | 7 | | 54
0 | | | 503 | | | 1 | | | | | 503 | | | 0 | | 0 | | | 503 | | | 0 | | 0 | | | 503 | 3 4 | 90.6 | U | 1 | · | , | # **Definitive invertebrate assays** Aged SSL soil Compound: Sb $[Sb_2(SO_4)_3]$ Start Date: 6-Jul-00 Invertebrate: E. crypticus | Nominal
Sb (mg/kg) | Rep | Initial container | Adults | MEAN | Juveniles | MEAN | |-----------------------|-----|-------------------|---------|------|-----------|-------| | | | mass (g) | 7-20-00 | S.E. | 8-3-00 | S.E. | | 0 | 1 | 96.7 | 9 | 9.75 | 759 | 735.3 | | 0 | | 93 | 10 | 0.25 | | 21.11 | | 0 | | | 10 | 0.20 | 754 | 21.11 | | 0 | | 92.8 | 10 | | 756 | | | 100 | 1 | 92.8 | 9 | 9.5 | 675 | 755 | | 100 | 2 | 96.44 | 10 | 0.29 | 753 | 29.09 | | 100 | | 97.15 | 9 | 5.25 | 782 | 20.00 | | 100 | 4 | 90.62 | 10 | | 810 | | | 140 | 1 | 96.31 | 10 | 9.25 | 634 | 621 | | 140 | 2 | 90.21 | 9 | 0.25 | 629 | 31.43 | | 140 | 3 | 90.92 | 9 | | 535 | | | 140 | 4 | 92.84 | 9 | | 686 | | | 196 | 1 | 95.46 | 9 | 9.5 | 561 | 579 | | 196 | 2 | 95.59 | 9 | 0.29 | 593 | 15.38 | | 196 | 3 | 97.05 | 10 | | 547 | | | 196 | 4 | 90.89 | 10 | | 615 | | | 274 | 1 | 96.03 | 10 | 9.5 | 586 | 470 | | 274 | 2 | 92.84 | 10 | 0.50 | 399 | 74.52 | | 274 | 3 | 92.26 | 8 | | 294 | | | 274 | 4 | 92.66 | 10 | | 601 | | | 384 | 1 | 91.16 | 10 | 8.75 | 362 | 254 | | 384 | 2 | 92.54 | 8 | 0.48 | 147 | 47.04 | | 384 | 3 | 90.67 | 8 | | 295 | | | 384 | 4 | 97.14 | 9 | | 212 | | | 538 | 1 | 93.18 | 6 | 5 | 22 | 52.75 | | 538 | 2 | 93.17 | 7 | 1.35 | 85 | 20.79 | | 538 | 3 | 90.81 | 1 | | 12 | | | 538
753 | 4 | 97.16 | 6 | | 92 | | | 753
753 | 2 | 90.49 | 0 | 4.75 | 1 | 15.25 | | 753
753 | 3 | 92.9 | 7 | 1.65 | 9 | 7.98 | | 753
753 | 4 | 90.65 | 5 | | 13 | | | 1054 | 1 | 93.27 | 7 | | 38 | | | 1054 | 2 | 96.89 | 0 | 1 | 4 | 1.5 | | 1054 | 3 | 91.26
91.15 | 0
4 | 1.00 | 1 | 0.87 | | 1054 | 4 | 91.15 | | | 1 | | | 1004 | 4 | 92.12 | 0 | | 0 | | # **Definitive invertebrate assays** Aged SSL soil Compound: Ba $[Ba(NO_3)_2]$ Start Date: 21-Nov-00 Invertebrate: *E. crypticus* | | | • | | | | | |-----------------------|-----|-------------------|--------|------|-----------|-------------| | Nominal
Ba (mg/kg) | Rep | Initial container | 12/5 | Mean | 12/19 | Mean | | , , , | | mass (g) | Adults | S.E. | Juveniles | S.E. | | _ | | | | | 4400 | 054.5 | | 0 | | 94.22 | 10 | | 1166 | 951.5 | | 0 | | 94.92 | 10 | | 752 | 87.44 | | 0 | | 94.11 | 10 | | 998 | | | 0 | | 93.01 | 10 | | 890 | 040.5 | | 451 | 1 | 94.35 | 10 | | 958 | 913.5 | | 451 | 2 | 92.17 | 10 | | 912 | 32.9 | | 451 | 3 | 96.89 | 10 | | 963 | | | 451 | 4 | 98.42 | 10 | | 821 | 0.40 | | 597 | | 92.31 | 10 | | 1020 | 843 | | 597 | | 91.79 | 10 | | 925 | 78.05 | | 597 | | 98.51 | 10 | | 741 | | | 597 | | 97.43 | 10 | | 686 | 7000 | | 686 | | 98.12 | 10 | | 896 | 790.8 | | 686 | | 92.08 | 10 | | 681 | 60.23 | | 686 | | 97.31 | 10 | | 894 | | | 686 | | 92.31 | 10 | | 692 | | | 789 | | 94.67 | 10 | | 795 | 560.5 | | 789 | | 92.71 | 9 | | 512 | 80.42 | | 789 | | 97.39 | 9 | | 506 | | | 789 | | 92.45 | 10 | | 429 | | | 907 | | 91.77 | 10 | | 470 | 392.8 | | 907 | | 92.59 | 10 | | 301 | 36.98 | | 907 | | 98.26 | 10 | | 369 | | | 907 | | 92.25 | 9 | | 431 | | | 1043 | | 96.66 | 10 | | 238 | 244 | | 1043 | | 91.75 | 10 | | 261 | 9.772 | | 1043 | | 94.29 | 10 | | 258 | | | 1043 | | 92.73 | 10 | | 219 | | | 1200 | | 91.74 | 9 | | 88 | 159.3 | | 1200 | 2 | 92.17 | 9 | | 182 | 26.63 | | 1200 | _ | 92.51 | 10 | | 213 | | | 1200 | | 92.57 | 9 | | 154 | | | 1314 | | 96.51 | 10 | | 157 | 86.25 | | 1314 | 2 | 102.37 | 9 | | 35 | 27.57 | | 1314 | 3 | 95.65 | 10 | | 51 | | | 1314 | 4 | 96.95 | 9 | | 102 | | | 1551 | 1 | 101.29 | 9 | | 27 | 17 | | 1551 | 2 | 95.5 | 7 | 0.91 | 21 | 4.397 | | 1551 | 3 | 9 6.33 | 6 | | 7 | | |------|---|---------------|----|------|----|-------| | 1551 | 4 | 97.94 | 10 | | 13 | | | 1830 | 1 | 97.44 | 5 | 6.5 | 11 | 8.75 | | 1830 | 2 | 101.56 | 5 | 1.19 | 17 | 3.276 | | 1830 | 3 | 97.11 | 6 | | 3 | | | 1830 | 4 | 96.44 | 10 | | 4 | | ## APPENDIX C CONCENTRATION-RESPONSE CURVES FOR REPRODUCTION ENDPOINT DETERMINED FROM ERT USING JUVENILE PRODUCTION DATA IN AGED AMENDED SSL SOIL # C 1. Effect of beryllium on E. crypticus juvenile production. # C 2. Effect of manganese on E. crypticus juvenile production. # C 3. Effect of antimony on E. crypticus juvenile production. ## C 4. Effect of barium on E. crypticus juvenile production. Blank # APPENDIX D STATISTICAL ANALYSES OF THE DEFINITIVE TESTS DATA SYSTAT VERSION 7.0.1 COPYRIGHT (C) 1997, SPSS INC. Welcome to SYSTAT! ## EC₅₀ determination for Be effect on E. crypticus using Gompertz model. ``` MODEL: nonlin print=long model juveniles=g*exp((log(1-.5))*(concentr/x)^b) save c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\reBE50 / resid estimate/ start = 1100, 40, 2 iter=200 ``` 36 cases have been saved into a SYSTAT file #### Iteration | No. | Loss | G | X | В | |-----|-------------|-------------|-------------|-------------| | 0 | .233815D+07 | .110000D+04 | .400000D+02 | .200000D+01 | | 1 | .125614D+07 | .983256D+03 | .607419D+02 | .373687D+01 | | 2 | .707919D+06 | .113273D+04 | .476012D+02 | .407977D+01 | | 3 | .441396D+06 | .107003D+04 | .531308D+02 | .664166D+01 | | 4 | .362585D+06 | .109485D+04 | .516959D+02 | .841714D+01 | | 5 |
.361045D+06 | .109652D+04 | .519856D+02 | .841232D+01 | | 6 | .361045D+06 | .109652D+04 | .519858D+02 | .841631D+01 | | 7 | .361045D+06 | .109652D+04 | .519857D+02 | .841614D+01 | #### Dependent variable is JUVENILES | Source | Sum-of-Squares | df | Mean-Square | |---------------|----------------|----|-------------| | Regression | 2.76125E+07 | 3 | 9204157.081 | | Residual | 361044.758 | 33 | 10940.750 | | Total | 2.79735E+07 | 36 | | | Mean correcte | d 8292462.556 | 35 | | | Raw R-square (1-Residual/Total) | = | 0.987 | |--|---|-------| | Mean corrected R-square (1-Residual/Corrected) | = | 0.956 | | R(observed vs predicted) square | = | 0.956 | | 5 | | | | Wald Confiden | ce Interval | |-----------|----------|--------|-----------|---------------|-------------| | Parameter | Estimate | A.S.E. | Param/ASE | Lower < | 95%> Upper | | G | 1096.517 | 25.298 | 43.344 | 1045.048 | 1147.987 | | X | 51.986 | 1.064 | 48.855 | 49.821 | 54.151 | | B | 8.416 | 1.539 | 5.467 | 5.284 | 11.548 | | | JUVENILES | JUVENILES | | |------|-----------|-----------|----------| | Case | Observed | Predicted | Residual | | 1 | 1112.000 | 1096.517 | 15.483 | | 2 | 1149.000 | 1096.517 | 52.483 | | 3 | 1175.000 | 1096.517 | 78.483 | | 4 | 981.000 | 1096.517 | -115.517 | | 5 | 1166.000 | 1096.514 | 69.486 | | 6 | 906.000 | 1096.514 | -190.514 | | 7 | 1083.000 | 1096.514 | -13.514 | | 8 | 1051.000 | 1096.514 | -45.514 | | 9 | 1164.000 | 1096.416 | 67.584 | | | | | | | 10 | 1339.000 | 1096.416 | 242.584 | |----|----------|----------|----------| | 11 | 1054.000 | 1096.416 | -42.416 | | 12 | 912.000 | 1096.416 | -184.416 | | 13 | 1208.000 | 1095.381 | 112.619 | | 14 | 979.000 | 1095.381 | -116.381 | | 15 | 1002.000 | 1095.381 | -93.381 | | 16 | 1221.000 | 1095.381 | 125.619 | | 17 | 1095.000 | 1062.557 | 32.443 | | 18 | 1174.000 | 1062.557 | 111.443 | | 19 | 1038.000 | 1062.557 | -24.557 | | 20 | 1004.000 | 1062.557 | -58.557 | | 21 | 1018.000 | 952.935 | 65.065 | | 22 | 1129.000 | 952.935 | 176.065 | | 23 | 803.000 | 952.935 | -149.935 | | 24 | 836.000 | 952.935 | -116.935 | | 25 | 233.000 | 243.565 | -10.565 | | 26 | 146.000 | 243.565 | -97.565 | | 27 | 441.000 | 243.565 | 197.435 | | 28 | 158.000 | 243.565 | -85.565 | | 29 | 12.000 | 0.000 | 12.000 | | 30 | 9.000 | 0.000 | 9.000 | | 31 | 12.000 | 0.000 | 12.000 | | 32 | 3.000 | 0.000 | 3.000 | | 33 | 1.000 | 0.000 | 1.000 | | 34 | 0.0 | 0.000 | 0.000 | | 35 | 4.000 | 0.000 | 4.000 | | 36 | 0.0 | 0.000 | 0.000 | Asymptotic Correlation Matrix of Parameters | | G | A | ь | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.449 | 1.000 | | | В | -0.455 | 0.600 | 1.000 | Residuals have been saved. Residuals have been saved. ## EC20 determination for Be effect on E. crypticus using Gompertz model. #### MODEL: ``` nonlin print=long model juveniles=g*exp((log(1-.2))*(concentr/x)^b) save c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\reBE20n / resid estimate/ start = 1100, 40, 2 iter=200 ``` #### Iteration ``` No. Loss G X B 0 .220852D+07 .110000D+04 .400000D+02 .200000D+01 1 .100630D+07 .115691D+04 .311839D+02 .261898D+01 2 .968446D+06 .104284D+04 .472301D+02 .478036D+01 3 .591771D+06 .112268D+04 .382929D+02 .509404D+01 4 .411737D+06 .108543D+04 .453549D+02 .711621D+01 5 .361131D+06 .109566D+04 .455155D+02 .842984D+01 6 .361045D+06 .109652D+04 .454342D+02 .841464D+01 7 .361045D+06 .109652D+04 .454357D+02 .841621D+01 ``` ## 8 .361045D+06 .109652D+04 .454356D+02 .841614D+01 ## Dependent variable is JUVENILES | Source | Sum-of-Squares | df | Mean-Square | |---------------|----------------|----|-------------| | Regression | 2.76125E+07 | 3 | 9204157.081 | | Residual | 361044.758 | 33 | 10940.750 | | Total | 2.79735E+07 | 36 | | | Mean correcte | d 8292462.556 | 35 | | Raw R-square (1-Residual/Total) = 0.987 Mean corrected R-square (1-Residual/Corrected) = 0.956 R(observed vs predicted) square = 0.956 | Danamakaa | | | | Wald Confiden | ce Interval | |-----------|----------|--------|-----------|---------------|-------------| | Parameter | Estimate | A.S.E. | Param/ASE | Lower < | 95%> Upper | | G | 1096.517 | 25.298 | 43.344 | 1045.048 | 1147.987 | | X | 45.436 | 1.835 | 24.765 | 41.703 | 49.168 | | В | 8.416 | 1.539 | 5.467 | 5.284 | 11.548 | | _ | JUVENILES | JUVENILES | | |------|-----------|-----------|----------| | Case | Observed | Predicted | Residual | | 1 | 1112.000 | 1096.517 | 15.483 | | 2 | 1149.000 | 1096.517 | 52.483 | | 3 | 1175.000 | 1096.517 | 78.483 | | 4 | 981.000 | 1096.517 | -115.517 | | 5 | 1166.000 | 1096.514 | 69.486 | | 6 | 906.000 | 1096.514 | -190.514 | | 7 | 1083.000 | 1096.514 | -13.514 | | 8 | 1051.000 | 1096.514 | -45.514 | | 9 | 1164.000 | 1096.416 | 67.584 | | 10 | 1339.000 | 1096.416 | 242.584 | | 11 | 1054.000 | 1096.416 | -42.416 | | 12 | 912.000 | 1096.416 | -184.416 | | 13 | 1208.000 | 1095.381 | 112.619 | | 14 | 979.000 | 1095.381 | -116.381 | | 15 | 1002.000 | 1095.381 | -93.381 | | 16 | 1221.000 | 1095.381 | 125.619 | | 17 | 1095.000 | 1062.557 | 32.443 | | 18 | 1174.000 | 1062.557 | 111.443 | | 19 | 1038.000 | 1062.557 | -24.557 | | 20 | 1004.000 | 1062.557 | -58.557 | | 21 | 1018.000 | 952.935 | 65.065 | | 22 | 1129.000 | 952.935 | 176.065 | | 23 | 803.000 | 952.935 | -149.935 | | 24 | 836.000 | 952.935 | -116.935 | | 25 | 233.000 | 243.565 | -10.565 | | 26 | 146.000 | 243.565 | -97.565 | | 27 | 441.000 | 243.565 | 197.435 | | 28 | 158.000 | 243.565 | -85.565 | | 29 | 12.000 | 0.000 | 12.000 | | 30 | 9.000 | 0.000 | 9.000 | | 31 | 12.000 | 0.000 | 12.000 | | 32 | 3.000 | 0.000 | 3.000 | | 33 | 1.000 | 0.000 | 1.000 | | 34 | 0.0 | 0.000 | 0.000 | | 35 | 4.000 | 0.000 | 4.000 | | 36 | 0.0 | 0.000 | 0.000 | ``` Asymptotic Correlation Matrix of Parameters ``` | | G | X | В | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.505 | 1.000 | | | В | -0.455 | 0.914 | 1.000 | Residuals have been saved. #### SYSTAT Rectangular file c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\\nonlinre\\navy\ert\models\reBE20n #### contains variables: JUVENILES CONCENTR ESTIMATE RESIDUAL #### RESIDUALS MODEL: #### graph use c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\reBE20n plot residual*concentr plot residual*estimate Stem and Leaf Plot of variable: RESIDUAL, N = 36 Minimum: -190.514 Lower hinge: -72.061 Median: 2.000 Upper hinge: 66.324 Maximum: 242.584 | | RESIDUAL | |--------------|-----------| | N of cases | 36 | | Minimum | -190.514 | | Maximum | 242.584 | | Mean | 1.179 | | Std. Error | 16.926 | | Standard Dev | 101.559 | | Variance | 10314.134 | ### ANOVA for juveniles Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (9 levels) 2.5, 12, 18, 24, 36, 43, 57, 83, 110 Dep Var: JUVENILES N: 36 Multiple R: 0.979 Squared multiple R: 0.958 #### Analysis of Variance | Source | Sum-of-Squares | df | Mean-Square | F-ratio | P | |----------|----------------|----|-------------|---------|-------| | CONCENTR | 7943123.556 | 8 | 992890.444 | 76.739 | 0.000 | | Error | 349339.000 | 27 | 12938.481 | | | Durbin-Watson D Statistic 2.569 First Order Autocorrelation -0.285 COL/ ROW CONCENTR 1 2.5 2 12 3 18 4 24 5 36 6 43 7 57 8 83 9 110 Using least squares means. Post Hoc test of JUVENILES Using model MSE of 12938.481 with 27 df. Matrix of pairwise mean differences: | 1 | 1
0.0 | 2 | 3 | 4 | 5 | |---|----------------|-----------|-----------|-----------|-----------| | 2 | | | | | | | | -52.750 | 0.0 | | | | | 3 | 13.000 | 65.750 | 0.0 | | | | 4 | -1 .750 | 51.000 | -14.750 | 0.0 | | | 5 | -26.500 | 26.250 | -39.500 | -24.750 | 0.0 | | 6 | -157.750 | -105.000 | -170.750 | -156.000 | -131.250 | | 7 | -859.750 | -807.000 | -872.750 | -858.000 | -833.250 | | 8 | -1095.250 | -1042.500 | -1108.250 | -1093.500 | -1068.750 | | 9 | -1103.000 | -1050.250 | -1116.000 | -1101.250 | -1076.500 | | | 6 | 7 | 8 | 9 | | | 6 | 0.0 | | | - | | | 7 | -702.000 | 0.0 | | | | | 8 | -937.500 | -235.500 | 0.0 | | | | 9 | -945.250 | -243.250 | -7.750 | 0.0 | | Fisher's Least-Significant-Difference Test. Matrix of pairwise comparison probabilities: | 1 | 1
1.000
0.517 | 2
1.000 | 3 | 4 | 5 | |---------------|---------------------|----------------|----------------|----------------|----------------| | 2
3 | 0.873 | 0.421 | 1.000 | | | | 4
5 | 0.983
0.744 | 0.531
0.747 | 0.856
0.627 | 1.000
0.761 | 1.000 | | 6 | 0.060 | 0.203 | 0.043 | 0.063 | 0.114
0.000 | | 7
8 | 0.000
0.000 | 0.000
0.000 | 0.000
0.000 | 0.000
0.000 | 0.000 | | 9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | 6 | 7 | 8 | 9 | | | 6 | 1.000 | | | | | | 7 | 0.000 | 1.000 | 1 000 | | | | 8 | 0.000 | 0.007 | 1.000 | 1.000 | | | 9 | 0.000 | 0.005 | 0.924 | 1.000 | | #### ANOVA for adults. Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (9 levels) 2.5, 12, 18, 24, 36, 43, 57, 83, 110 Dep Var: ADULTS N: 36 Multiple R: 0.889 Squared multiple R: 0.791 #### Analysis of Variance | Source | Sum-of-Squares | đf | Mean-Square | F-ratio | P | |----------|----------------|----|-------------|---------|-------| | CONCENTR | 105.000 | 8 | 13.125 | 12.770 | 0.000 | | Error | 27.750 | 27 | 1.028 | | | Durbin-Watson D Statistic 2.266 First Order Autocorrelation -0.173 COL/ ROW CONCENTR - 1 2.5 2 12 - 18 3 - 24 - 5 36 - 6 43 - 7 57 - 8 83 - 110 Using least squares means. Post Hoc test of ADULTS |--| | Using model MSE of | 1.028 with 27 df. | |--------------------|-------------------| | Matrix of pairwise | mean differences: | | | 1 | 2 | 3 | 4 | 5 | |---|--------|--------|--------|--------|--------| | 1 | 0.0 | | | - | 3 | | 2 | 0.000 | 0.0 | | | | | 3 | -0.250 | -0.250 | 0.0 | | | | 4 | 0.000 | 0.0 | 0.250 | 0.0 | | | 5 | 0.000 | 0.0 | 0.250 | 0.0 | 0.0 | | 6 | 0.000 | 0.0 | 0.250 | 0.0 | 0.0 | | 7 | 0.000 | 0.0 | 0.250 | 0.0 | 0.0 | | 8 | -1.000 | -1.000 | -0.750 | -1.000 |
-1.000 | | 9 | -5.500 | -5.500 | -5.250 | -5.500 | -5.500 | | | 6 | 7 | 8 | 9 | | | 6 | 0.0 | | _ | • | | | 7 | 0.0 | 0.0 | | | | | 8 | -1.000 | -1.000 | 0.0 | | | | 9 | -5.500 | -5.500 | -4.500 | 0.0 | | Fisher's Least-Significant-Difference Test. Matrix of pairwise comparison probabilities: | | | 1 | 2 | 3 | 4 | 5 | |---------|---|-------|-------|-------|-------|-------| | | 1 | 1.000 | | | - | J | | | 2 | 1.000 | 1.000 | | | | | | 3 | 0.730 | 0.730 | 1.000 | | | | | 4 | 1.000 | 1.000 | 0.730 | 1.000 | | | | 5 | 1.000 | 1.000 | 0.730 | 1.000 | 1.000 | | | 6 | 1.000 | 1.000 | 0.730 | 1.000 | 1.000 | | | 7 | 1.000 | 1.000 | 0.730 | 1.000 | 1.000 | | | 8 | 0.174 | 0.174 | 0.305 | 0.174 | 0.174 | | | 9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | 6 | 7 | 8 | 9 | | | | 6 | 1.000 | | Ū | , | | | | 7 | 1.000 | 1.000 | | | | | | 8 | 0.174 | 0.174 | 1.000 | | | | | 9 | 0.000 | 0.000 | 0.000 | 1.000 | | | | | | | | | | Residuals for beryllium. Residuals for beryllium. SYSTAT VERSION 7.0.1 COPYRIGHT (C) 1997, SPSS INC. Welcome to SYSTAT! ## EC₅₀ determination for Mn effect on E. crypticus using Gompertz model. SYSTAT Rectangular file C:\DOCUME~1\RGKUPERM\MYDOCU~1\SYSTAT\ROMAN3\\NONLINRE\\NAVY\ERT\DATA\MNSDANEW. SYD, contains variables: JUVENILES CONCENTR #### Iteration | No. | Loss | G | Х | В | |-----|-------------|-------------|-------------|-------------| | 0 | .559258D+07 | .700000D+03 | .100000D+03 | .200000D+01 | | 1 | .305280D+07 | .103502D+04 | .809053D+02 | .901236D+00 | | 2 | .301590D+07 | .714606D+03 | .134369D+03 | .122146D+01 | | 3 | .112391D+07 | .619380D+03 | .302422D+03 | .275802D+01 | | 4 | .102054D+07 | .766991D+03 | .218266D+03 | .147993D+01 | | 5 | .638838D+06 | .930454D+03 | .171675D+03 | .154953D+01 | | 6 | .381747D+06 | .896718D+03 | .205888D+03 | .222469D+01 | | 7 | .366625D+06 | .946253D+03 | .190418D+03 | .219337D+01 | | 8 | .366075D+06 | .941904D+03 | .192547D+03 | .223653D+01 | | 9 | .366075D+06 | .942280D+03 | .192479D+03 | .223580D+01 | | 10 | .366075D+06 | 942276D+03 | .192480D+03 | .223583D+01 | | 11 | .366075D+06 | .942276D+03 | .192480D+03 | .223583D+01 | ## Dependent variable is JUVENILES | Source St | um-of-Squares | df | Mean-Square | |-------------------------|----------------------------|----------|-------------| | Regression | 1.24710E+07 | 3 | 4156989.043 | | Residual | 366074.870 | 33 | 11093.178 | | Total
Mean corrected | 1.28370E+07
3902921.000 | 36
35 | • | | Raw R-square (1-Residual/Total) | = | 0.971 | |--|---|-------| | Mean corrected R-square (1-Residual/Corrected) | = | 0.906 | | R(observed vs predicted) square | = | 0.906 | | Parameter | Estimate | A.S.E. | Param/ASE | Wald Confiden
Lower < | ce Interval
95%> Upper | |-----------|----------|---------|-----------|--------------------------|---------------------------| | G | 942.276 | 117.981 | 7.987 | 702.241 | 1182.310 | | X | 192.480 | 22.479 | 8.563 | 146.746 | 238.214 | | B | 2.236 | 0.643 | 3.480 | 0.929 | 3.543 | | | JUVENILES | JUVENILES | | |------|-----------|-----------|----------| | Case | Observed | Predicted | Residual | | 1 | 759.000 | 819.497 | -60.497 | | 2 | 672.000 | 819.497 | -147.497 | | 3 | 754.000 | 819.497 | -65.497 | | 4 | 756.000 | 819.497 | -63.497 | | 5 | 1097.000 | 805.562 | 291.438 | | | 1027.000 | | | | 6 | 1021.000 | 805.562 | 215.438 | |----|----------|---------|----------| | 7 | 995.000 | 805.562 | 189.438 | | 8 | 747.000 | 805.562 | -58.562 | | 9 | 684.000 | 772.707 | -88.707 | | 10 | 662.000 | 772.707 | -110.707 | | 11 | 717.000 | 772.707 | -55.707 | | 12 | 846.000 | 772.707 | 73.293 | | 13 | 649.000 | 743.792 | -94.792 | | 14 | 627.000 | 743.792 | -116.792 | | 15 | 670.000 | 743.792 | -73.792 | | 16 | 731.000 | 743.792 | -12.792 | | 17 | 638.000 | 607.146 | 30.854 | | 18 | 693.000 | 607.146 | 85.854 | | 19 | 752.000 | 607.146 | 144.854 | | 20 | 718.000 | 607.146 | 110.854 | | 21 | 481.000 | 476.758 | 4.242 | | 22 | 397.000 | 476.758 | -79.758 | | 23 | 501.000 | 476.758 | 24.242 | | 24 | 291.000 | 476.758 | -185.758 | | 25 | 136.000 | 223.079 | -87.079 | | 26 | 313.000 | 223.079 | 89.921 | | 27 | 293.000 | 223.079 | 69.921 | | 28 | 204.000 | 223.079 | -19.079 | | 29 | 33.000 | 35.290 | -2.290 | | 30 | 14.000 | 35.290 | -21.290 | | 31 | 29.000 | 35.290 | -6.290 | | 32 | 54.000 | 35.290 | 18.710 | | 33 | 0.0 | 0.031 | -0.031 | | 34 | 0.0 | 0.031 | -0.031 | | 35 | 0.0 | 0.031 | -0.031 | | 36 | 0.0 | 0.031 | -0.031 | ## Asymptotic Correlation Matrix of Parameters | | G | Х | В | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.943 | 1.000 | | | В | -0.927 | 0.856 | 1.000 | Residuals have been saved. SYSTAT Rectangular file c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\\nonlinre\\navy\ert\models\resMn50 .SYD, contains variables: JUVENILES CONCENTR ESTIMATE RESIDUAL Stem and Leaf Plot of variable: RESIDUAL, N = 36 Minimum: -185.758 Lower hinge: -69.644 Median: -4.290 Upper hinge: 50.387 Maximum: 291.438 ``` -1 8 -1 411 -0 H 9887766655 -0 M 211000000 0 M 0123 0 H 6788 1 14 1 8 2 1 * * * Outside Values * * * 2 9 ``` RESIDUAL N of cases 36 Minimum -185.758 Maximum 291.438 Mean -0.040 Std. Error 17.045 Standard Dev 102.271 Variance 10459.280 ## EC_{20} determination for Mn effect on E. crypticus using Gompertz model. #### Iteration | No. | Loss | G | X | В | |-----|-------------|-------------|-------------|-------------| | 0 | .711361D+07 | .700000D+03 | .490000D+02 | .200000D+01 | | 1 | .618281D+07 | .902002D+03 | .335404D+02 | .143387D+01 | | 2 | .381836D+07 | .141525D+04 | .662866D+01 | .642051D+00 | | 3 | .380141D+07 | .135601D+04 | .758002D+01 | .661399D+00 | | 4 | .377875D+07 | .130350D+04 | .858887D+01 | .680595D+00 | | 5 | .375140D+07 | .125682D+04 | .965010D+01 | .699617D+00 | | 6 | .372022D+07 | .121519D+04 | .107584D+02 | .718451D+00 | | 7 | .368593D+07 | .117794D+04 | .119086D+02 | .737083D+00 | | 8 | .364915D+07 | .114451D+04 | .130953D+02 | .755505D+00 | | 9 | .361038D+07 | .111444D+04 | .143135D+02 | .773709D+00 | | 10 | .357006D+07 | .108729D+04 | .155585D+02 | .791692D+00 | | 11 | .354357D+07 | .964517D+03 | .218936D+02 | .880484D+00 | | 12 | .341518D+07 | .885479D+03 | .287133D+02 | .966831D+00 | | 13 | .327682D+07 | .682300D+03 | .560622D+02 | .129431D+01 | | 14 | .106814D+07 | .616562D+03 | .185842D+03 | .287100D+01 | | 15 | .768567D+06 | .760705D+03 | .120754D+03 | .188895D+01 | | 16 | .432874D+06 | .986246D+03 | .951375D+02 | .197507D+01 | | 17 | .370064D+06 | .926436D+03 | .115542D+03 | .220970D+01 | | 18 | .366075D+06 | .942343D+03 | .115927D+03 | .223563D+01 | | 19 | .366075D+06 | .942275D+03 | .115938D+03 | .223583D+01 | | 20 | .366075D+06 | .942276D+03 | .115938D+03 | .223583D+01 | #### Dependent variable is JUVENILES | Sc | ource | Sum-of-Squares | đf | Mean-Square | |--------|----------|----------------|----|-------------| | Regre | ession | 1.24710E+07 | 3 | 4156989.043 | | Res | sidual | 366074.870 | 33 | 11093.178 | | | Total | 1.28370E+07 | 36 | | | Mean o | correcte | d 3902921.000 | 35 | | ``` Raw R-square (1-Residual/Total) = 0.971 Mean corrected R-square (1-Residual/Corrected) = 0.906 R(observed vs predicted) square = 0.906 ``` | Parameter | Estimate | A.S.E. | Param/ASE | Wald Confiden
Lower < | ce Interval
95%> Upper | |-----------|----------|---------|-----------|--------------------------|---------------------------| | G | 942.276 | 117.981 | 7.987 | 702.241 | 1182.310 | | X | 115.938 | 29.326 | 3.953 | 56.273 | 175.602 | | B | 2.236 | 0.643 | 3.480 | 0.929 | 3.543 | | Cooo | JUVENILES | JUVENILES | | |--------|-----------|-----------|----------| | Case | Observed | Predicted | Residual | | 1 | 759.000 | 819.497 | -60.497 | | 2
3 | 672.000 | 819.497 | -147.497 | | | 754.000 | 819.497 | -65.497 | | 4 | 756.000 | 819.497 | -63.497 | | 5 | 1097.000 | 805.562 | 291.438 | | 6 | 1021.000 | 805.562 | 215.438 | | 7 | 995.000 | 805.562 | 189.438 | | 8 | 747.000 | 805.562 | -58.562 | | 9 | 684.000 | 772.707 | -88.707 | | 10 | 662.000 | 772.707 | -110.707 | | 11 | 717.000 | 772.707 | -55.707 | | 12 | 846.000 | 772.707 | 73.293 | | 13 | 649.000 | 743.792 | -94.792 | | 14 | 627.000 | 743.792 | -116.792 | | 15 | 670.000 | 743.792 | -73.792 | | 16 | 731.000 | 743.792 | -12.792 | | 17 | 638.000 | 607.146 | 30.854 | | 18 | 693.000 | 607.146 | 85.854 | | 19 | 752.000 | 607.146 | 144.854 | | 20 | 718.000 | 607.146 | 110.854 | | 21 | 481.000 | 476.758 | 4.242 | | 22 | 397.000 | 476.758 | -79.758 | | 23 | 501.000 | 476.758 | 24.242 | | 24 | 291.000 | 476.758 | -185.758 | | 25 | 136.000 | 223.079 | -87.079 | | 26 | 313.000 | 223.079 | 89.921 | | 27 | 293.000 | 223.079 | 69.921 | | 28 | 204.000 | 223.079 | -19.079 | | 29 | 33.000 | 35.290 | -2.290 | | 30 | 14.000 | 35.290 | -21.290 | | 31 | 29.000 | 35.290 | -6.290 | | 32 | 54.000 | 35.290 | 18.710 | | 33 | 0.0 | 0.031 | -0.031 | | 34 | 0.0 | 0.031 | -0.031 | | 35 | 0.0 | 0.031 | -0.031 | | 36 | 0.0 | 0.031 | -0.031 | | | | | | Asymptotic Correlation Matrix of Parameters | | G | x | В | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.969 | 1.000 | | | В | -0.927 | 0.971 | 1.000 | Residuals have been saved. #### ANOVA for Juveniles Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (9 levels) 94, 99, 110, 119, 157, 191, 267, 386, 644 Dep Var: JUVENILES N: 36 Multiple R: 0.980 Squared multiple R: 0.960 #### Analysis of Variance | Source | • | Sum-of-Squares | df | Mean-Square | F-ratio | P | |----------|---|----------------|----|-------------|---------|-------| | CONCENTR | | 3746881.000 | 8 | 468360.125 | 81.042 | 0.000 | | Error | | 156040.000 | 27 | 5779.259 | | | Durbin-Watson D Statistic 1.928 First Order Autocorrelation 0.034 COL/ ROW CONCENTR - 1 94 - 2 99 - 3 110 - 4 119 - 5 157 - 6 191 - 7 267 - 8 386 - 9 644 Using least squares means. Post Hoc test of JUVENILES FOST NOC LEST OI OOVENILES Using model MSE of 5779.259 with 27 df. Matrix of pairwise mean
differences: | | 1 | 2 | 3 | 4 | 5 | |---|----------|----------|----------|----------|----------| | 1 | 0.0 | | | | | | 2 | 229.750 | 0.0 | | | | | 3 | -8.000 | -237.750 | 0.0 | | | | 4 | -66.000 | -295.750 | -58.000 | 0.0 | | | 5 | -35.000 | -264.750 | -27.000 | 31.000 | 0.0 | | 6 | -317.750 | -547.500 | -309.750 | -251.750 | -282.750 | | 7 | -498.750 | -728.500 | -490.750 | -432.750 | -463.750 | | 8 | -702.750 | -932.500 | -694.750 | -636.750 | -667.750 | | 9 | -735.250 | -965.000 | -727.250 | -669.250 | -700.250 | | | 6 | 7 | 8 | 9 | | | 6 | 0.0 | | | | | | 7 | -181.000 | 0.0 | | | | | 8 | -385.000 | -204.000 | 0.0 | | | | 9 | -417.500 | -236.500 | -32.500 | 0.0 | | Fisher's Least-Significant-Difference Test. Matrix of pairwise comparison probabilities: | | 1 | 2 | 3 | 4 | 5 | |-------|-------|-------|-------|-------|-------| | 1 | 1.000 | | | | | | 2 | 0.000 | 1.000 | | | | | 3 | 0.883 | 0.000 | 1.000 | | | | 4 | 0.230 | 0.000 | 0.290 | 1.000 | | | 5 | 0.520 | 0.000 | 0.620 | 0.569 | 1.000 | | 6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 7 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | 6 | 7 | 8 | 9 | | | 6 | 1.000 | | | | | | 7 | 0.002 | 1.000 | | | | | 8 | 0.000 | 0.001 | 1.000 | | | |
9 | 0.000 | 0.000 | 0.550 | 1.000 | | |
 | | | | | | #### ANOVA for Adults Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (9 levels) 94, 99, 110, 119, 157, 191, 267, 386, 644 Dep Var: ADULTS N: 36 Multiple R: 0.965 Squared multiple R: 0.931 #### Analysis of Variance | Source | Sum-of-Squares | đf | Mean-Square | F-ratio | P | |----------|----------------|----|-------------|---------|-------| | CONCENTR | 349.889 | 8 | 43.736 | 45.418 | 0.000 | | Error | 26.000 | 27 | 0.963 | | | Durbin-Watson D Statistic 2.313 First Order Autocorrelation -0.168 COL/ ROW CONCENTR - 1 94 - 2 99 - 3 110 - 119 157 191 - 5 - 267 7 - 386 8 - 9 644 | Using model | MSE of | 0.963 | with | 27 df. | |-------------|---------|--------|--------|--------| | Matrix of p | airwise | mean d | liffer | ences: | | | 1 | 2 | 3 | 4 | 5 | |---|--------|--------|--------|--------|--------| | 1 | 0.0 | | | | | | 2 | -0.250 | 0.0 | | | | | 3 | -0.250 | 0.000 | 0.0 | | | | 4 | 0.0 | 0.250 | 0.250 | 0.0 | | | 5 | 0.250 | 0.500 | 0.500 | 0.250 | 0.0 | | 6 | -0.250 | 0.000 | 0.000 | -0.250 | -0.500 | | 7 | -0.500 | -0.250 | -0.250 | -0.500 | -0.750 | | 8 | -4.750 | -4.500 | -4.500 | -4.750 | -5.000 | | 9 | -9.500 | -9.250 | -9.250 | -9.500 | -9.750 | | | 6 | 7 | 8 | 9 | | | 6 | 0.0 | | | | | | 7 | -0.250 | 0.0 | | | | | 8 | -4.500 | -4.250 | 0.0 | | | | 9 | -9.250 | -9.000 | -4.750 | 0.0 | | | | | | | | | Fisher's Least-Significant-Difference Test. Matrix of pairwise comparison probabilities: | | 1 | 2 | 3 | 4 | 3 | |---|-------|-------|-------|-------|-------| | 1 | 1.000 | | | | | | 2 | 0.721 | 1.000 | | | | | 3 | 0.721 | 1.000 | 1.000 | | | | 4 | 1.000 | 0.721 | 0.721 | 1.000 | | | 5 | 0.721 | 0.477 | 0.477 | 0.721 | 1.000 | | 6 | 0.721 | 1.000 | 1.000 | 0.721 | 0.477 | | 7 | 0.477 | 0.721 | 0.721 | 0.477 | 0.289 | | 8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | 6 | 7 | 8 | 9 | | | 6 | 1.000 | | | | | | 7 | 0.721 | 1.000 | | | | | 8 | 0.000 | 0.000 | 1.000 | | | | 9 | 0.000 | 0.000 | 0.000 | 1.000 | | | | | | | | | Residuals for manganese. Residuals for manganese. SYSTAT VERSION 7.0.1 COPYRIGHT (C) 1997, SPSS INC. Welcome to SYSTAT! ## EC, determination for Sb effect on E. crypticus using Compertz model. Model: nonlin print=long model juveniles=g*exp((log(1-.5))*(concentr/x)^b) save c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\resSb50j / resid estimate/ start = 700, 316, 2 iter=200 #### Iteration | No. | Loss | G | X | В | |-----|-------------|-------------|-------------|-------------| | 0 | .202239D+06 | .700000D+03 | .316000D+03 | .200000D+01 | | 1 | .151117D+06 | .742440D+03 | .315357D+03 | .229931D+01 | | 2 | .151086D+06 | .741629D+03 | .316066D+03 | .232190D+01 | | 3 | .151085D+06 | .741545D+03 | .316123D+03 | .232313D+01 | | | .151085D+06 | | | | ## Dependent variable is JUVENILES Mean corrected 3215076.750 35 | Source | Sum-of-Squares | df | Mean-Square | |------------|----------------|----|-------------| | Regression | 8457997.541 | 3 | 2819332.514 | | Residual | 151085.459 | 33 | 4578.347 | | Total | 8609083.000 | 36 | | | Raw R-square (1-Residual/Total) | = | 0.982 | |--|---|-------| | Mean corrected R-square (1-Residual/Corrected) | = | 0.953 | | R(observed vs predicted) square | = | 0 953 | | _ | | | | Wald Confiden | ce Interval | |-----------|----------|--------|-----------|---------------|-------------| | Parameter | Estimate | A.S.E. | Param/ASE | Lower < | 95%> Upper | | G | 741.539 | 27.090 | 27.373 | 686.425 | 796.654 | | X | 316.127 | 15.332 | 20.619 | 284.934 | 347.319 | | В | 2.323 | 0.314 | 7.402 | 1.685 | 2.962 | | | JUVENILES | TIBIENTI DO | | |------|-----------|-------------|----------| | _ | | JUVENILES | | | Case | Observed | Predicted | Residual | | 1 | 759.000 | 741.539 | 17.461 | | 2 | 672.000 | 741.539 | -69.539 | | 3 | 754.000 | 741.539 | 12.461 | | 4 | 756.000 | 741.539 | 14.461 | | 5 | 675.000 | 706.918 | -31.918 | | 6 | 753.000 | 706.918 | 46.082 | | 7 | 782.000 | 706.918 | 75.082 | | 8 | 810.000 | 706.918 | 103.082 | | 9 | 634.000 | 667.974 | -33.974 | | 10 | 629.000 | 667.974 | -38.974 | | 11 | 535.000 | 667.974 | -132.974 | | 12 | 686.000 | 667.974 | 18.026 | | 13 | 561.000 | 590.177 | -29.177 | | 14 | 593.000 | 590.177 | 2.823 | | 15 | 547.000 | 590.177 | -43.177 | | 16 | 615.000 | 590.177 | 24.823 | |----|---------|---------|----------| | 17 | 586.000 | 451.028 | 134.972 | | 18 | 399.000 | 451.028 | -52.028 | | 19 | 294.000 | 451.028 | -157.028 | | 20 | 601.000 | 451.028 | 149.972 | | 21 | 362.000 | 249.543 | 112.457 | | 22 | 147.000 | 249.543 | -102.543 | | 23 | 295.000 | 249.543 | 45.457 | | 24 | 212.000 | 249.543 | -37.543 | | 25 | 22.000 | 68.357 | -46.357 | | 26 | 85.000 | 68.357 | 16.643 | | 27 | 12.000 | 68.357 | -56.357 | | 28 | 92.000 | 68.357 | 23.643 | | 29 | 1.000 | 4.065 | -3.065 | | 30 | 9.000 | 4.065 | 4.935 | | 31 | 13.000 | 4.065 | 8.935 | | 32 | 38.000 | 4.065 | 33.935 | | 33 | 4.000 | 0.009 | 3.991 | | 34 | 1.000 | 0.009 | 0.991 | | 35 | 1.000 | 0.009 | 0.991 | | 36 | 0.0 | 0.009 | -0.009 | Asymptotic Correlation Matrix of Parameters | | G | X | B | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.691 | 1.000 | | | В | -0.652 | 0.521 | 1.000 | Residuals have been saved. ## EC20 determination for Sb effect on E. crypticus using Gompertz model. #### Model: ``` nonlin print=long model juveniles=g*exp((log(1-.2))*(concentr/x)^b) save c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\resSb20j / resid estimate/ start = 700, 190, 2 iter=200 ``` #### Iteration | No. | | G | X | В | |-----|-------------|-------------|-------------|-------------| | 0 | .198039D+06 | .700000D+03 | .190000D+03 | .200000D+01 | | 1 | .151252D+06 | .744755D+03 | .190552D+03 | .226355D+01 | | 2 | .151086D+06 | .741733D+03 | .193877D+03 | .231952D+01 | | · 3 | .151085D+06 | .741553D+03 | .194068D+03 | .232305D+01 | | 4 | .151085D+06 | .741540D+03 | .194080D+03 | .232320D+01 | | 5 | .151085D+06 | .741539D+03 | .194080D+03 | .232321D+01 | #### Dependent variable is JUVENILES | Source | Sum-of-Squares | df | Mean-Square | |---------------|----------------|----|-------------| | Regression | 8457997.541 | 3 | 2819332.514 | | Residual | 151085.459 | 33 | 4578.347 | | Total | 8609083.000 | 36 | | | Mean correcte | ad 3215076.750 | 35 | | Raw R-square (1-Residual/Total) = 0.982 Mean corrected R-square (1-Residual/Corrected) = 0.953 | _ | | | | Wald Confiden | ce Interval | |-----------|----------|--------|-----------|---------------|-------------| | Parameter | Estimate | A.S.E. | Param/ASE | Lower < | 95%> Upper | | G | 741.539 | 27.090 | 27.373 | 686.424 | 796.654 | | X | 194.080 | 19.434 | 9.987 | 154.541 | 233,619 | | В | 2.323 | 0.314 | 7.402 | 1.685 | 2.962 | | Case | JUVENILES
Observed | JUVENILES
Predicted | Residual | |---|---|---|---| | Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 6 27 28 9 30 31 32 33 43 35 | 759.000 754.000 756.000 756.000 753.000 753.000 782.000 810.000 634.000 629.000 535.000 686.000 561.000 593.000 547.000 615.000 294.000 615.000 294.000 212.000 212.000 22.000 85.000 12.000 92.000 12.000 92.000 13.000 38.000 1.000 1.000 | 741.539 741.539 741.539 741.539 741.539 706.918 706.918 706.918 706.918 667.974 667.974 667.974 667.974 590.177 590.177 590.177 590.177 590.177 451.028 451.028 451.028 451.028 451.028 451.028 451.028 451.028 451.028 451.028 451.028 451.028 451.028 451.058 451.065 4.065 4.065 4.065 4.065 4.065 0.009 0.009 | Residual 17.461 -69.539 12.461 14.461 -31.918 46.082 75.082 103.082 -33.974 -38.974 -132.974 18.026 -29.177 2.823 -43.177 24.823 134.972 -52.028 -157.028 149.972 112.457 -102.543 45.457
-37.543 -46.357 23.643 -3.065 4.935 8.935 33.991 0.991 0.991 | | · 36 | 0.0 | 0.009 | -0.009 | Asymptotic Correlation Matrix of Parameters | | G | Х | В | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.764 | 1.000 | | | В | -0.652 | 0.911 | 1.000 | Residuals have been saved. RESIDUALS MODEL: graph use c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\resSb20j plot residual*concentr plot residual*estimate ``` SYSTAT Rectangular file c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\\nonlinre\\navy\ert\models\resSb20 j.SYD, contains variables: ``` JUVENILES CONCENTR ESTIMATE RESIDUAL Stem and Leaf Plot of variable: RESIDUAL, N = 36 Minimum: -157.028 Lower hinge: -38.258 Median: 3.407 Upper hinge: 24.233 Maximum: 149.972 ``` -1 * Outside Values * * * 0 -1 -0 -0 -0 5544 -0 H 33332 -0 00 0 M 00000011111 0 H 223 0 44 0 0 01 1 * Outside Values * * * 1 ``` ``` RESIDUAL N of cases 36 Minimum -157.028 Maximum 149.972 Mean 0.460 Std. Error 10.950 Standard Dev 65.700 Variance 4316.510 ``` ### Graph Model: #### ANOVA for Juveniles Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (9 levels) 0, 100, 140, 196, 274, 384, 538, 753, 1054 Dep Var: JUVENILES N: 36 Multiple R: 0.980 Squared multiple R: 0.960 Estimates of effects B = (X'X) X'Y | | | JUVENILES | |----------|-----|-----------| | CONSTANT | | 387.083 | | CONCENTR | 0 | 348.167 | | CONCENTR | 100 | 367.917 | | CONCENTR | 140 | 233.917 | | CONCENTR | 196 | 191.917 | | CONCENTR | 274 | 82.917 | | CONCENTR | 384 | -133.083 | | CONCENTR | 538 | -334.333 | | CONCENTR | 753 | -371.833 | | | | | #### Analysis of Variance | Source | Sum-of-Squares | đf | Mean-Square | F-ratio | P | |----------|----------------|----|-------------|---------|-------| | CONCENTR | 3085725.500 | 8 | 385715.688 | 80.512 | 0.000 | | Error | 129351.250 | 27 | 4790.787 | | | ______ Durbin-Watson D Statistic 2.491 First Order Autocorrelation -0.248 COL/ ROW CONCENTR - 1 0 - 2 100 - 3 140 - 4 196 - 5 274 - 6 384 7 538 - 7 538 8 753 - 9 1054 Using least squares means. Post Hoc test of JUVENILES . Using model MSE of 4790.787 with 27 df. Matrix of pairwise mean differences: | | 1 | 2 | 3 | Λ | 5 | |---|----------|----------|---------|-----|---| | 1 | 0.0 | _ | 3 | ** | 5 | | 2 | 19.750 | 0.0 | | | | | 3 | -114.250 | -134.000 | 0.0 | | | | 4 | -156.250 | -176.000 | -42.000 | 0.0 | | | 5
6
7
8
9 | -265.250
-481.250
-682.500
-720.000
-733.750 | -285.000
-501.000
-702.250
-739.750
-753.500 | -151.000
-367.000
-568.250
-605.750
-619.500 | -109.000
-325.000
-526.250
-563.750
-577.500 | 0.0
-216.000
-417.250
-454.750
-468.500 | |-----------------------|--|--|--|--|---| | | Ö | , | 0 | , | | | 6 | 0.0 | | | | | | 7 | -201.250 | 0.0 | | | | | 8 | -238.750 | -37.500 | 0.0 | | | | 9 | -252.500 | -51.250 | -13.750 | 0.0 | | Fisher's Least-Significant-Difference Test. Matrix of pairwise comparison probabilities: | | 1 | 2 | 3 | 4 | 5 | |---|-------|-------|-------|-------|-------| | 1 | 1.000 | | | | | | 2 | 0.690 | 1.000 | | | | | 3 | 0.027 | 0.011 | 1.000 | | | | 4 | 0.004 | 0.001 | 0.398 | 1.000 | | | 5 | 0.000 | 0.000 | 0.005 | 0.034 | 1.000 | | 6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 7 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | _ | 6 | 7 | 8 | 9 | | | 6 | 1.000 | | | | | | 7 | 0.000 | 1.000 | | | | | 8 | 0.000 | 0.450 | 1.000 | | | | 9 | 0.000 | 0.304 | 0.781 | 1.000 | | ### ANOVA for Adults Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (9 levels) 0, 100, 140, 196, 274, 384, 538, 753, 1054 Dep Var: ADULTS N: 36 Multiple R: 0.896 Squared multiple R: 0.804 Estimates of effects B = (X'X) X'Y ## ADULTS | CONSTANT | | 7.444 | |----------|-----|--------| | CONCENTR | 0 | 2.306 | | CONCENTR | 100 | 2.056 | | CONCENTR | 140 | 1.806 | | CONCENTR | 196 | 2.056 | | CONCENTR | 274 | 2.056 | | CONCENTR | 384 | 1.306 | | CONCENTR | 538 | -2.444 | | CONCENTR | 753 | -2.694 | Analysis of Variance Source Sum-of-Squares df Mean-Square F-ratio P | CONCENTR | | 310.889 | 8 | 38.861 | 13.806 | 0.000 | |--|---------------------------|--|---|---|--|---| | Error | | 76.000 | 27 | 2.815 | | | | | | | | | | | | Durbin-Watson D Statistic 2.835 First Order Autocorrelation -0.428 COL/ ROW CONCENTR 1 0 2 100 3 140 4 196 5 274 6 384 7 538 8 753 9 1054 | | | | | | | | Using least so
Post Hoc test | nuares mean | s.
 | | | | | | Using model MS
Matrix of pair | SE of 2.815
Twise mean | with 27 df
differences | · | | | | | | 1 | 1 | 2 | 3 | 4 | 5 | | | 2 3 4 5 5 6 7 8 8 · · | -0.250
-0.250
-0.250
-0.250
-1.000
-4.750
-5.000
-8.750 | 0.0
-0.250
0.0
0.000
-0.750
-4.500
-4.750
-8.500 | 0.0
0.250
0.250
-0.500
-4.250
-4.500
-8.250 | 0.0
0.000
-0.750
-4.500
-4.750
-8.500 | 0.0
-0.750
-4.500
-4.750
-8.500 | | | 8 - | 0.0
-3.750
-4.000
-7.750 | 0.0
-0.250
-4.000 | 0.0
-3.750 | 0.0 | | | Fisher's Least-Significant-Difference Test. Matrix of pairwise comparison probabilities: | | | | | | | | | 1
2
3
4 | 1
1.000
0.835
0.677 | 2
1.000
0.835 | 3
1.000 | 4 | 5 | | | 5
6
7
8
9 | 0.835
0.835
0.407
0.000
0.000
0.000 | 1.000
1.000
0.533
0.001
0.000
0.000 | 0.835
0.835
0.677
0.001
0.001 | 1.000
1.000
0.533
0.001
0.000
0.000 | 1.000
0.533
0.001
0.000
0.000 | | | 6
7
8
9 | 1.000
0.004
0.002
0.000 | 1.000
0.835
0.002 | 1.000 | 1.000 | | # Residuals for antimony # Residuals for antimony SYSTAT VERSION 7.0.1 COPYRIGHT (C) 1997, SPSS INC. Welcome to SYSTAT! # EC₅₀ determination for Ba effect on E. crypticus using Gompertz model. ### MODEL: nonlin print=long model juveniles=g*exp((log(1-.5))*(concentr/x)^b) save c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\reBA50 / resid estimate/ start = 1000, 800, 2 iter=200 ## 44 cases have been saved into a SYSTAT file ### Iteration | No. | Loss | G | X | В | |-----|-------------|-------------|-------------|-------------| | 0 | .992081D+06 | .100000D+04 | .800000D+03 | .200000D+01 | | 1 | .703536D+06 | .972099D+03 | .961583D+03 | .239042D+01 | | 2 | .701177D+06 | .993959D+03 | .944922D+03 | .233348D+01 | | 3 | .701119D+06 | .991798D+03 | .947307D+03 | .235458D+01 | | 4 | .701117D+06 | .992360D+03 | .946634D+03 | .235188D+01 | | | .701117D+06 | | | .235264D+01 | | 6 | .701117D+06 | .992284D+03 | .946705D+03 | .235253D+01 | | 7 | .701117D+06 | .992281D+03 | .946709D+03 | .235255D+01 | # Dependent variable is JUVENILES | Source | Sum-of-Squares | đf | Mean-Square | |---------------|----------------|----|-------------| | Regression | 1.41810E+07 | 3 | 4726985.947 | | Residual | 701117.160 | 41 | 17100.419 | | Total | 1.48821E+07 | 44 | | | Mean correcte | d 5909866.795 | 43 | | | Raw R-square (1-Residual/Total) | = | 0.953 | |--|---|-------| | Mean corrected R-square (1-Residual/Corrected) | = | 0.881 | | R(observed vs predicted) square | = | 0.882 | | Parameter | Estimate | A.S.E. | Param/ASE | Wald Confider
Lower < | ce Interval
95%> Upper | |-----------|----------|--------|-----------|--------------------------|---------------------------| | G | 992.281 | 59.002 | 16.818 | 873.124 | 1111.437 | | X | 946.709 | 57.875 | 16.358 | 829.828 | 1063.590 | | B | 2.353 | 0.348 | 6.759 | 1.650 | 3.055 | | | JUVENILES | JUVENILES | | |------|-----------|-----------|----------| | Case | Observed | Predicted | Residual | | 1 | 1166.000 | 992.007 | 173.993 | | 2 | 752.000 | 992.007 | -240.007 | | 3 | 998.000 | 992.007 | 5.993 | | 4 | 890.000 | 992.007 | -102.007 | | 5 | 958.000 | 888.873 | 69.127 | | 6 | 912.000 | 888.873 | 23.127 | | 7 | 963.000 | 888.873 | 74.127 | | 8 | 821.000 | 888.873 | -67.873 | | 9 | 1020.000 | 669.664 | 350.336 | | 10 | 925.000 | 669.664 | 255.336 | | 11 | 741.000 | 669.664 | 71.336 | | 12 | 686.000 | 669.664 | 16.336 | | 13 | 896.000 | 714.637 | 181.363 | | 14 | 681.000 | 714.637 | -33.637 | | 15 | 894.000 | 714.637 | 179.363 | | 16 | 692.000 | 714.637 | -22.637 | | 17 | 795.000 | 630.064 | 164.936 | | 18 | 512.000 | 630.064 | -118.064 | | 19 | 506.000 | 630.064 | -124.064 | | 20 | 429.000 | 630.064 | -201.064 | | 21 | 470.000 | 585.480 | -115.480 | | 22 | 301.000 | 585.480 | -284.480 | | 23 | 369.000 | 585.480 | -216.480 | | 24 | 431.000 | 585.480 | -154.480 | | 25 | 238.000 | 159.814 | 78.186 | | 26 | 261.000 | 159.814 | 101.186 | | 27 | 258.000 | 159.814 | 98.186 | | 28 | 219.000 | 159.814 | 59.186 | | 29 | 88.000 | 210.523 | -122.523 | | 30 | 182.000 | 210.523 | -28.523 | | 31 | 213.000 | 210.523 | 2.477 | | 32 | 154.000 | 210.523 | -56.523 | | 33 | 157.000 | 43.181 | 113.819 | | 34 | 35.000 | 43.181 | -8.181 | | 35 | 51.000 | 43.181 | 7.819 | | 36 | 102.000 | 43.181 | 58.819 | | 37 | 27.000 | 17.693 | 9.307 | | 38 | 21.000 | 17.693 | 3.307 | | 39 | 7.000 | 17.693 | -10.693 | | 40 | 13.000 | 17.693 | -4.693 | | 41 | 11.000 | 10.252 | 0.748 | | 42 | 17.000 | 10.252 | 6.748
 | 43 | 3.000 | 10.252 | -7.252 | | 44 | 4.000 | 10.252 | -6.252 | Asymptotic Correlation Matrix of Parameters | | G | X | В | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.777 | 1.000 | | | В | -0.619 | 0.541 | 1,000 | Residuals have been saved. ``` Residuals MODEL: ``` ``` graph use c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\reBA50 plot residual*concentr plot residual*estimate SYSTAT Rectangular file c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\\nonlinre\\navy\ert\models\reBA50. SYD, RESIDUAL, N = 44 Stem and Leaf Plot of variable: Minimum: -284.480 Lower hinge: -62.198 2.892 Median: 72.731 Upper hinge: Maximum: 350.336 -2 8 * * Outside Values * * * 410 -2 -1 5 -1 22110 -0 H 65 32210000 -0 0 M 000000012 0 H 5567779 1 01 1 6778 2 2 5 * Outside Values * * 3 5 RESIDUAL 44 N of cases Minimum -284.480 Maximum 350.336 Mean 4.097 Std. Error 19.240 127.624 ``` # EC20 determination for Ba effect on E. crypticus using Gompertz model. 16287.878 ## MODEL: Standard Dev Variance ``` nonlin print=long model juveniles=g*exp((log(1-.2))*(concentr/x)^b) c:\Docume~1\rgkuperm\MyDocu~1\systat\roman3\nonlinre\navy\ert\models\reBA20 / resid estimate/ start = 1000, 600, 2 iter=200 ``` ## Iteration | | Loss | _ | X | В | |---|-------------|-------------|-------------|-------------| | | .897903D+06 | | .600000D+03 | .200000D+01 | | | .707471D+06 | | .562714D+03 | .218228D+01 | | | .701491D+06 | | .588580D+03 | .234812D+01 | | | .701127D+06 | | .583758D+03 | .234486D+01 | | 4 | .701117D+06 | .992128D+03 | .584929D+03 | .235278D+01 | | 5 | .701117D+06 | .992301D+03 | .584724D+03 | .235230D+01 | | 6 | .701117D+06 | .992276D+03 | .584768D+03 | .235257D+01 | | 7 | .701117D+06 | .992282D+03 | .584760D+03 | .235254D+01 | | | | | | | ## Dependent variable is JUVENILES | Source | Sum-of-Squares | đf | Mean-Square | |------------|----------------|----|-------------| | Regression | 1.41810E+07 | 3 | 4726985.947 | | Residual | 701117.160 | 41 | 17100.419 | | m - + - 1 | 1 400047 07 | | | Total 1.48821E+07 44 Mean corrected 5909866.795 43 Raw R-square (1-Residual/Total) = 0.953 Mean corrected R-square (1-Residual/Corrected) = 0.881 R(observed vs predicted) square = 0.882 | Parameter | Estimate | A.S.E. | Param/ASE | Wald Confiden
Lower < | ce Interval
95%> Upper | |-----------|----------|--------|-----------|--------------------------|---------------------------| | G | 992.282 | 59.002 | 16.818 | 873.126 | 1111.438 | | X | 584.760 | 68.027 | 8.596 | 447.376 | 722.144 | | В | 2.353 | 0.348 | 6.759 | 1.650 | 3.055 | | | JUVENILES | JUVENILES | | |------|-----------|-----------|----------| | Case | Observed | Predicted | Residual | | 1 | 1166.000 | 992.007 | 173.993 | | 2 | 752.000 | 992.007 | -240.007 | | 3 | 998.000 | 992.007 | 5.993 | | 4 | 890.000 | 992.007 | -102.007 | | 5 | 958.000 | 888.873 | 69.127 | | 6 | 912.000 | 888.873 | 23.127 | | 7 | 963.000 | 888.873 | 74.127 | | 8 | 821.000 | 888.873 | -67.873 | | 9 | 1020.000 | 669.664 | 350.336 | | 10 | 925.000 | 669.664 | 255.336 | | 11 | 741.000 | 669.664 | 71.336 | | 12 | 686.000 | 669.664 | 16.336 | | 13 | 896.000 | 714.637 | 181.363 | | 14 | 681.000 | 714.637 | -33.637 | | 15 | 894.000 | 714.637 | 179.363 | | 16 | 692.000 | 714.637 | -22.637 | | 17 | 795.000 | 630.064 | 164.936 | | 18 | 512.000 | 630.064 | -118.064 | | 19 | 506.000 | 630.064 | -124.064 | | 20 | 429.000 | 630.064 | -201.064 | | 21 | 470.000 | 585.480 | -115.480 | | 22 | 301.000 | 585.480 | -284.480 | | 23 | 369.000 | 585.480 | -216.480 | | 24 | 431.000 | 585.480 | -154.480 | | 25 | 238.000 | 159.814 | 78.186 | | 26 | 261.000 | 159.814 | 101.186 | | 27 | 258.000 | 159.814 | 98.186 | | 28 | 219.000 | 159.814 | 59.186 | | | | | | | 29 | 88.000 | 210.523 | -122.523 | |----|---------|---------|----------| | 30 | 182.000 | 210.523 | -28.523 | | 31 | 213.000 | 210.523 | 2.477 | | 32 | 154.000 | 210.523 | -56.523 | | 33 | 157.000 | 43.181 | 113.819 | | 34 | 35.000 | 43.181 | -8.181 | | 35 | 51.000 | 43.181 | 7.819 | | 36 | 102.000 | 43.181 | 58.819 | | 37 | 27.000 | 17.693 | 9.307 | | 38 | 21.000 | 17.693 | 3.307 | | 39 | 7.000 | 17.693 | -10.693 | | 40 | 13.000 | 17.693 | -4.693 | | 41 | 11.000 | 10.252 | 0.748 | | 42 | 17.000 | 10.252 | 6.748 | | 43 | 3.000 | 10.252 | -7.252 | | 44 | 4.000 | 10.252 | -6.252 | Asymptotic Correlation Matrix of Parameters | | G | X | В | |---|--------|-------|-------| | G | 1.000 | | | | X | -0.787 | 1.000 | | | В | -0.619 | 0.897 | 1.000 | Residuals have been saved. ### ANOVA for Juveniles Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (11 levels) 34, 433, 689, 744, 791, 843, 1333, 1429, 1798, 2000, 2111 Dep Var: JUVENILES N: 44 Multiple R: 0.971 Squared multiple R: 0.943 ### Analysis of Variance | Source | Sum-of-Squares | đf | Mean-Square | F-ratio | P | |----------|----------------|----|-------------|---------|-------| | CONCENTR | 5575324.045 | 10 | 557532.405 | 54.996 | 0.000 | | Error | 334542.750 | 33 | 10137.659 | | | Durbin-Watson D Statistic 2.752 First Order Autocorrelation -0.445 COL/ ROW CONCENTR - 1 34 - 2 433 - 689 3 744 - 791 - 6 843 7 1333 - 1429 9 1798 10 2000 11 2111 Using least squares means. Post Hoc test of JUVENILES Using model MSE of 10137.659 with 33 df. Matrix of pairwise mean differences: | | 1 | 2 | 3 | 4 | 5 | |-------------|----------|----------|----------|----------|----------| | 1 | 0.0 | | | | J | | 2 | -38.000 | 0.0 | | | | | 3 | -160.750 | -122.750 | 0.0 | | | | 4 | -108.500 | -70.500 | 52.250 | 0.0 | | | 4
5
6 | -391.000 | -353.000 | -230.250 | -282.500 | 0.0 | | 6 | -558.750 | -520.750 | -398.000 | -450.250 | -167.750 | | 7 | -792.250 | -754.250 | -631.500 | -683.750 | -401.250 | | 8
9 | -707.500 | -669.500 | -546.750 | -599.000 | -316.500 | | 9 | -865.250 | -827.250 | -704.500 | -756.750 | -474.250 | | 10 | -934.500 | -896.500 | -773.750 | -826.000 | -543.500 | | 11 | -942.750 | -904.750 | -782.000 | -834.250 | -551.750 | | | | | | | 5527750 | | | 6 | 7 | 8 | 9 | 10 | | 6 | 0.0 | | | | | | 7 | -233.500 | 0.0 | | | | | 8
9 | -148.750 | 84.750 | 0.0 | | | | | -306.500 | -73.000 | -157.750 | 0.0 | | | 10 | -375.750 | -142.250 | -227.000 | -69.250 | 0.0 | | 11 | -384.000 | -150.500 | -235.250 | -77.500 | -8.250 | | | | | | | | | 4.4 | 11 | | | | | | 11 | 0.0 | | | | | Fisher's Least-Significant-Difference Test. Matrix of pairwise comparison probabilities: | 1 | 1 | 2 | 3 | 4 | 5 | |---------------|-------|-------|-------|-------|-------| | 2 | 0.597 | 1.000 | | | • | | 3 | 0.031 | 0.094 | 1.000 | | | | | 0.137 | 0.329 | 0.468 | 1.000 | | | 4
5 | 0.000 | 0.000 | 0.003 | 0.000 | 1.000 | | 6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.025 | | 7 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 11 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | 0.000 | 0.000 | 0.000 | | | 6 | 7 | 8 | 9 | 10 | | 6 | 1.000 | · | Ü | , | 10 | | 7 | 0.002 | 1.000 | | | | | 8 | 0.044 | 0.242 | 1.000 | | | | 9 | 0.000 | 0.313 | 0.034 | 1.000 | | | 10 | 0.000 | 0.054 | 0.003 | 0.338 | 1 000 | | 11 | 0.000 | 0.042 | 0.003 | | 1.000 | | | 2.000 | 0.042 | 0.002 | 0.284 | 0.908 | | | 11 | | | | | | 11 | 1.000 | | | | | ### ANOVA for Adults Effects coding used for categorical variables in model. Categorical values encountered during processing are: CONCENTR (11 levels) 34, 433, 689, 744, 791, 843, 1333, 1429, 1798, 2000, 2111 Dep Var: ADULT N: 44 Multiple R: 0.785 Squared multiple R: 0.617 ### Analysis of Variance | Source | Sum-of-Squares | df | Mean-Square | F-ratio | P | |----------|----------------|----|-------------|---------|-------| | CONCENTR | 49.045 | 10 | 4.905 | 5.307 | 0.000 | | Error | 30.500 | 33 | 0.924 | | | Durbin-Watson D Statistic 2.033 First Order Autocorrelation -0.217 COL/ ROW CONCENTR - 1 34 2 433 - 3 689 - 4 744 - 5 791 - 6 843 - 7 1333 - 8 1429 - 9 1798 - 10 2000 11 2111 Using least squares means. Post Hoc test of ADULT ______ Using model MSE of 0.924 with 33 df. Matrix of pairwise mean differences: | | 1 | 2 | 3 | 4 | 5 | |----|--------|--------|--------|--------|--------| | 1 | 0.0 | | | | | | 2 | 0.0 | 0.0 | | | | | 3 | 0.0 | 0.0 | 0.0 | | | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | | | 5 | -0.500 | -0.500 | -0.500 | -0.500 | 0.0 | | 6 | -0.250 | -0.250 | -0.250 | -0.250 | 0.250 | | 7 | -0.750 | -0.750 | -0.750 | -0.750 | -0.250 | | 8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 | | 9 | -0.500 | -0.500 | -0.500 | -0.500 | 0.000 | | 10 | -2.000 | -2.000 | -2.000 | -2.000 | -1.500 | | 11 | -3.500 | -3.500 | -3.500 | -3.500 | -3.000 | | | 6 | 7 | 8 | 9 | 10 | |----------------------|------------------|-------------|--------|--------|--------| | 6
7 | 0.0 | | | | | | 8 | -0.500 | 0.0 | 0 0 | | | | 9 | 0.250 | 0.750 | 0.0 | | | | 10 | -0.250
-1.750 | 0.250 | -0.500 | 0.0 | | | 11 | | -1.250 | -2.000 | -1.500 | 0.0 | | 11 | -3.250
11 | -2.750 | -3.500 | -3.000 | -1.500 | | 11 | 0.0 | | | | | | | | | | | | | Fisher's Least-Signi | ficant-Differ | ence Test. | • | | | | Matrix of pairwise c | omparison prol | babilities: | | | | | | 1 | 2 | 3 | 4 | 5 | | 1 | 1.000 | | - | _ | 3 | | 1
2 | 1.000 | 1.000 | | | | | 3 | 1.000 | 1.000 | 1.000 | | | | 4 | 1.000 | 1.000 | 1.000 | 1.000 | | | 5
6 | 0.467 | 0.467 | 0.467 | 0.467 | 1.000 | | 6 | 0.715 | 0.715 | 0.715 | 0.715 | 0.715 | | 7 | 0.278 | 0.278 | 0.278 | 0.278 | 0.715 | | 8 | 1.000 | 1.000 | 1.000 | 1.000 | 0.467 | | 9 | 0.467 | 0.467 | 0.467 | 0.467 | 1.000 | | 10 | 0.006 | 0.006 | 0.006 | 0.006 | 0.034 | | 11 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | 6 | 7 | 8 | 9 | 10 | | 6 | 1.000 | • | 0 | 9 | 10 | | 7 | 0.467 | 1.000 | | | | | 8 | 0.715 | 0.278 | 1.000 | | | | 9 | 0.715 | 0.715 | 0.467 | 1.000 | | | 10 | 0.015 | 0.075 | 0.006 | 0.034 | 1.000 | | 11 | 0.000 | 0.000 | 0.000 | 0.000 | 0.034 | | | | | | | 0.034 | | • • | 11 | | | | | | 11 | 1.000 | | | | | Residuals
for barium. Residuals for barium.